Powerful Products

FERTILIZER PRODUCT CATALOG

The First Step of Protecting Human Health Starts with Soil Health

On the one hand the effects of climate change with increased temperatures, melting glaciers, droughts, floods, severe weather events increase in frequency and impact, on the other hand, access to food because of the growing world population has become more and more difficult every day.

We believe that, in parallel with technological developments, sustainable successes can be achieved in both Soil Health, Plant Health and Human Health, thanks to medium and long-term strategies, plans and practices to be determined in both areas.

Ilt is with this purpose and belief that we, as Kitinsan A.Ş, have come together with our experience in the fertilizer industry for many years, as well as our technical knowledge on Chitosan Production. In the light of this unity, it has high added value that can compete in Turkish and World markets.

- * Liquid Chemical Fertilizers
- * Liquid Organic Fertilizers
- * Npk Powder Fertilizers
- * Organomineral Base Fertilizers
- * We aim to increase your soil fertility with chitosan-containing special fertilizers.

CHITOSAN

Chitosan is obtained by Deacetylation of the substance called Chitin, which forms the skeleton of arthropods such as Crabs, Shrimp, Lobster and Insects, and is in an edible form. It leaves no residue.

In addition to exhibiting antimicrobial activity on bacteria, viruses and fungi, it has been proven in numerous scientific publications that it prevents the development of soil and leaf pathogens in many agricultural products and increases the resistance mechanism in plants.

It is widely used day by day in order to prevent and/or reduce the development of mold, pathogen and other pests in agricultural products and to extend the shelf life of products.

R&D

While Kitinsan A.Ş set out with the aim of becoming an important player in the Fertilizer Industry, it incorporates its Laboratory and Chemical Engineers with the awareness of the importance of R&D, which is the most important concept of making a difference.

PRODUCTION

Our factory has a production area of 2000 m² in terms of its physical structure, It consists of an open area of 1000 m² and an administrative building of 500 m². Daily production capacity;

- 30 Tons of liquid fertilizer
- 50 Tons of powder fertilizer

Garanti Edilen İçerik	%w/w
Total Nitrogen (N)	13
Nitrate Nitrogen (N-NO ₃)	13
Water Soluble Potassium Oxide (K,O)	46
-	
PACKAGING	

Why Use Potassium Nitrate?

- It contains high amount of potassium. Large, plump and firm grains and fruits; It makes the colors come alive.
- It increases the nutritional value of the product (sugar, protein, flavor substances, vitamins).
- Minimizes fruit drop. Increases resistance to adverse growing conditions, lodging and diseases.
- The market value decreases due to the quality of the product in plants that cannot get enough potassium. The nitrogen in its composition ensures the continuation of vegetative activities after the flowering period, ensuring the continuation of fruit formation and development.
- It can be used safely in all plants as it does not contain sodium, chlorine and heavy metals.
- It can be mixed with all water-soluble fertilizers and pesticides.
- It should not be mixed with calcium compounds.

HOW IS IT APPLIED?

FROM THE LEAF

For All Plants; 300-400 Grams/100 Liters of Water


DRIP IRRIGATION

For All Plants; 4 - 6 Kg

FROM SOIL

For All Plants; 20 - 25 Kg

Guaranteed Content	%w/w
Water Soluble Potassium Oxide (K,O)	50

Why Is Potassium Sulfate Used?

- It is the fertilizer with the highest potassium.
- It is an ideal nutrient especially to ensure the rapid maturation of plants that have not completed their development.
- It increases bud and flower formation, fruit binding and fruit quality (sugars, proteins, vitamins, organic acids, flavoring agents, etc.) in vegetables and fruit trees.
- It gives the plant resistance against adverse growing conditions and diseases.
- It ensures that the product is large, full, hard and the color is vivid.

HOW IS IT APPLIED?

FROM THE LEAF

For All Plants; 250 - 300 Grams/100 Liters of Water

DRIP IRRIGATION

For All Plants; 3 -4 Kg

FROM SOIL

For All Plants; 20 - 25 Kg

kitinsan

Guaranteed Content	%w/w
Total Nitrogen (N)	12
Ammonium Nitrate (NH3-N)	12
Water Soluble Phosphorpentaoxide (P2O5)	61

PACKAGING

Why Use MAP (Mono Ammonium Phosphate)?

- It is the fertilizer with the highest phosphorus content.
- It contains nitrogen along with phosphorus.
- It creates a large and full product.
- When applied in the first development stages of the plant, it accelerates root development and creates a strong root system. Increases resistance to drought and diseases.
- It provides yield increase by encouraging tillering in grains. When applied before flowering, it encourages strong and simultaneous flowering, increases grain and fruit set.
- It provides earliness in harvest by accelerating generative development and maturation.
- When plants cannot get enough phosphorus, they slow down their above-ground growth and accelerate root growth.

HOW IS IT APPLIED?h

Guaranteed Content	%w/w
Water Soluble Phosphorpentaoxide (P2O5)	52
Water Soluble Potassium Oxide (K2O)	34

Different

PACKAGING

25 KG

Why is MKP (Mono Potassium Phosphate) Used?

- It is the richest fertilizer in phosphorus and potassium.
- It gives excellent results especially in plants that are overfed with nitrogen and have fruit holding problems.
- It provides balanced nutrition by meeting the phosphorus and potassium needs of the plant.
- When applied before flowering, it encourages vigorous and simultaneous flowering, increases grain and fruit set.
- It creates a high quality product (sugars, proteins, vitamins, organic acids, flavoring agents, etc.).
- MKP, which is given with drip irrigation, balances the pH value of the fertilized water used around
 4.5 and facilitates the uptake of nutrients by the plant.

HOW IS IT APPLIED?

FROM THE LEAF

DRIP IRRIGATION

For All Plants; 300 - 500 Grams/100 Liters of Water For All Plants; 1 - 4 Kg

Guaranteed Content	%w/w
Total Nitrogen (N)	17
Urea Nitrogen (NH3-N)	17
Water Soluble Potassium Oxide (P2O5)	44

25 KG

Why Use Urea Phosphate?

- It is a phosphorus-based fertilizer that is completely soluble in water.
- It is acidic.
- It helps the plant to take other elements that cannot be taken by lowering the pH in the root area.
- It is a powerful source of phosphorus.

HOW IS IT APPLIED?

FROM THE LEAF

DRIP IRRIGATION

For All Plants; 200-400 Grams/100 Liters of Water For All Plants; 1 - 4 Kg

Guaranteed Content	%w/w
Water Soluble Magnesium Oxide (MgO):	16
Water Soluble Sulfur Trioxide (SO3):	32

25 KG

MAGNEZYUM SÜLFAT

Why Use Magnesium Sulphate?

- It is the fertilizer with the highest magnesium content.
- It is an ideal food source for plants that need magnesium. However, it contains a high amount of sulfur.
- Magnesium is the main component of the green color (chlorophyll) in plants, and it encourages the plant to make the most of the sun's rays and provides the formation of healthy and dark green leaves. In this aspect; It is a plant nutrient that has a decisive effect on the photosynthetic power of the plant, its capacity to accumulate dry matter, and ultimately on yield and quality.
- Plants that do not get enough magnesium do not produce enough chlorophyll and the green color in the plant gradually disappears. In this case, the ability of photosynthesis disappears, the growth and development of the plant stops.

HOW IS IT APPLIED?

FROM THE LEAF

For All Plants; 200 -400 Grams / 100 Liters of Water

DRIP IRRIGATION
For All Plants;
3 - 5 Kg

ROM SOIL

For All Plants; 15 - 25 Kg

Guaranteed Content	%w/w
Total Nitrogen (N)	11
Nitrate Nitrogen (NH3-N)	11
Water Soluble Magnesium Oxide (MgO):	15

25 KG

Why Use Magnesium Nitrate?

- It contains nitrogen and high magnesium in its composition.
- Magnesium is the main component of the green color (chlorophyll) in the plant and increases the efficiency of photosynthesis by encouraging the plant to make maximum use of the sun's rays.
- With this feature, it has a decisive effect on yield and quality. By working in partnership with nitrogen, it revitalizes plants that show weak development in a short time.
- It strengthens growth and development by creating an increase in dry matter in the plant. It allows the plant to grow in height, prevents stunted development.
- It accelerates the development of branches, leaves and shoots. It prevents leaf and fruit shedding.
- Plants that do not get enough magnesium do not produce enough chlorophyll and the green color in the plant gradually disappears. As a result, the ability of photosynthesis disappears and growth and development stops.
- Magnesium also increases the water use efficiency of the plant and prolongs the drought resistance period.

HOW IS IT APPLIED?

FROM THE LEAF

ውቁቁ ት

DRIP IRRIGATION

FROM SOIL

MAGNEZYUM NİTRA1

For All Plants; 15 - 25 Kg

For All Plants; 200 -400 Grams / 100 Liters of Water For All Plants; 3 - 5 Kg

Guaranteed Content	%w/w
Water Soluble Zinc Oxide (Zn)	22

25

kitinsan

SÜLFAT HEPTA HİDRAT (ZnSO4. 7H2O)

PACKAGING

Why is Zinc Used?

- It is a fast-acting source of zinc.
- It prevents plants from being stunted, increases plant height and stem thickness.
- It accelerates tillering and rooting in grains, and stem and branch development in vegetables and fruit trees.
- It prevents the yellowing of the leaves, premature shedding and shrinkage.
- It increases the number of shoots and fruit set in fruit trees, prevents fruit deformations.
- Although the zinc requirement of plants is lower than other nutrients; If there is a zinc deficiency in the soil, the yield will be low even if all other nutrients are present in sufficient quantities.

HOW IS IT APPLIED?

FROM THE LEAF

For All Plants; 200 -400 Grams /100 Liters Water

DRIP IRRIGATION

For All Plants; 3 - 5 Kg

FOR SOIL

For All Plants; 15 - 25 Kg

PURE FERTILIZERS

Guaranteed Content	%w/w
Ammonia Nitrogen	21
PACKAGING	

Why Use AS 21% N?

- lt is a source of nitrogen in the form of ammonium.
- It is a valuable food source for soils where nitrogen deficiency is detected.
- Nitrogen fertilizers containing nitrate in water-saturated areas are lost through denitrification (conversion from NO3 to free N2).
- Due to these limitations of nitrate fertilizers, ammonium sulfate can be used in all kinds of soils.

PURE FERTILIZERS

Guaranteed Content	%w/w
Urea Nitrogen	46

PACKAGING

50 KG

Why Use UREA?

- UREA is the fertilizer type with the highest nitrogen rate with 46% nitrogen rate. It is white in color and odorless, and has a prill or granular structure. UREA can be used in all plants throughout the production period.
- When urea is thrown into the soil, it is broken down by the urea bacteria in the soil and changes form and becomes useful.
- UREA has a height-forming and root-enhancing effect in plants. It also affects fruit and grain development. Considering these features, it can be easily used in all kinds of plants, especially cereals and corn.
- By encouraging the formation of green parts, it allows the plant to benefit from the sun. Thus, it causes an increase in productivity.
- When given less, plant growth slows down, grain and fruit yield decreases. Urea should not be given close to seeds and roots.
- It can be used with planting in autumn and as top fertilizer in spring. When used as top fertilizer;
 Since there will be loss of nitrogen in the remaining urea on the soil surface, it should be buried under the soil with light tillage.

CHEMICAL BASE FERTILIZERS

PACKAGING

Formulations

Why Use Chemical Soil Fertilizer?

- It is very important for the root development of the plant.
- It is also effective in seed and fruit formation of the plant.
- By actively strengthening the root development of the plant, it makes the plant more resistant to soil-borne and disease-causing organisms.
- Increases the efficiency of water use to make crops more resilient and drought resistant.

Total Zinc (Zn)

Total Iron (Fe)

%1

%1

15.15.15	5 + (15 SO3) + 1 Zn	20 20 0	+ (25 SO3)	15.15.1	5	13 24 13	2+(10 SO3)+ME
%15	Nitrogen	%20	Nitrogen	%15		%13	Nitrogen
% 6 % 9	Ammonia Nitrogen (NO3-N) Urea Nitrogen	% 18,5 % 1,5	Ammonia Nitrogen (NO3-N) Urea Nitrogen	% 6 % 9	Ammonia Nitrogen (NO3-N) Urea Nitrogen	% 8 % 5	Ammonia Nitrogen (NO3-N) Urea Nitrogen
	Water Soluble Phosphorus Pentaoxide (P ₂ O ₅)	% 19	Water Soluble Phosphorus Pentaoxide (P ₂ 0 ₅)	% 15	Water Soluble Phosphorus Pentaoxide (P ₂ O ₅)	% 22	Water Soluble Phosphorus Pentaoxide (P ₂ O ₅)
(Neutral Ammonium Citrate and Water Soluble	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Neutral Ammonium Citrate and Water Soluble	, , , , ,	Water Soluble Phosphorus Pentaoxide	(Neutral Ammonium Citrate and Water Soluble Phosphorus Pentaoxide (P ₂ 0 ₅)
	Phosphorus Pentaoxide P₂O₅)		Phosphorus Pentaoxide (P ₂ O ₅)		(P_2O_5)	%12	Water Soluble Potassium Oxide (K ₂ 0)
, , ,	Water Soluble Potassium Oxide (K ₂ 0)			% 15	Water Soluble Potassium Oxide (K₂0)	% 10	Total Sulfur Trioxide (SO3)

% 25 Total Sulfur

Trioxide (SO3)

%1

Total Sulfur

Trioxide (SO3)

CHEMICAL BASE FERTILIZERS

PACKAGING

50 KG

Formulations

Why Use Organomineral Soil Fertilizer?

- It greatly improves the quality of the soil, as well as improves its structure.
- It increases the rate of organic matter in the soil and keeps the plant alive.
- It helps the plant to come to fruition by reviving it.
- In addition, it also brings root development and aeration. Provides a comfortable working area for roots, tubers and stolons in swelling soil.

	5.16.	6+(6SO ₃)+ME	Çotaı	nak 15.5.5	11.11 + (11	.11 SO3) + ME	8.21.	0 + (5 SO3)	25.5.	5 + (5 SO3)	30.0.	0 + (15 SO3)	21.0	.0 + (5 SO3)
	6 10	Organic Matter	% 20	Organic Matter	% 10	Organic Matter	% 15	Organic Matter	% 25 % 2	Nitrogen Ammonium Nitrogen		Nitrogen		Nitrogen
	66	Nitrogen Ammonium Nitrogen	% 2	Nitrogen Ammonium Nitrogen	%7	Nitrogen Ammonium Nitrogen	% 8 % 8	Nitrogen Ammonium Nitrogen	% 23	Urea Nitrogen	% 5 % 25	Ammonium Nitrogen Urea Nitrogen		Urea Nitrogen
			% 13	Urea Nitrogen	% 4	Urea Nitrogen			% 5	Total Phosphorus Pentaoxide (P ₂ O ₅)			% 5	Total Sulfur Trioxide (SO3)
•	6 16	Total Phosphorus Pentaoxide (P ₂ O ₅)	% 5	Total Phosphorus Pentaoxide (P ₂ O ₅)	% 11	Total Phosphorus Pentaoxide (P ₂ O ₅)	% 21	Total Phosphorus Pentaoxide (P ₂ O ₅)	% 5	Water Soluble Phosphorus	% 5	Total Sulfur Trioxide (SO3)	% 5	Water Soluble Sulfur
•	66	Water Soluble Potassium Oxide (K20)	% 4	Water Soluble Phosphorus Pentaoxide (P ₂ O ₅)	% 8	Water Soluble Phosphorus Pentaoxide (P ₂ O ₅)	% 9	Water Soluble Phosphorus Pentaoxide (P ₂ O ₅)			% 5	Water Soluble Sulfur Trioxide (SO3)		Trioxide (SO3)
•	66	Water Soluble Potassium Oxide (K20)	% 5	Water Soluble	% 11	Water Soluble	% 5	Total Sulfur	% 5	Water Soluble Potassium Oxide (K20)	% 10	Organic Matter	% 10	Organic Matter
	66	Water Soluble		Potassium Oxide (K20)		Potassium Oxide (K20)		Trioxide (SO3)	% 5	Total Sulfur	% 5	Total	0/2 20	Massimassma II
,	6 5	Sulfur Trioxide (SO3) Total	% 3	Total Quicklime (CaO)	% 11	Total Sulfur Trioxide (SO3)	% 5	Water Soluble Sulfur Trioxide (SO3)	70 3	Trioxide (SO3)	70 3	Total (Humic + Fulvik) Acid	70 20	Maximum Humi
	,	(Humic + Fulvik) Acid	% 2	Total Quicklime	% 5	Total (Humic + Fulvik)	% 20	Maximum Humidity	% 5	Water Soluble Sulfur	6-8	рН	5 - 7	рН
ľ	6 20	Maximum Humidity		(Ča0)		Àcid	6 - 8	pH		Trioxide (SO3)				
	8 - 8	•	% 0.1	Water Soluble Boron	% 0.3	Total Zinc (Zn)	% 5	Total (Humic + Fulvik)	% 10	Organic Matter				
	% 0. 1	Total Zinc (Zn)	% 0.1	Total Zinc (Zn)	% 20 6 - 8	Maximum Humidity	% 0.3	Acid 3 Total Zinc (Zn)	% 5	Total (Humic + Fulvik)				
			% 5	Total (Humic + Fulvik) Acid	0-8	pπ			6 - 8	Acid pH				
			% 20	Total (Humic + Fulvik)										
			6 - 8	Acid pH										
			5.5 - 7	7.5 pH										
										(,	roducts, f	+	,

PERFORMANS S E R I E S

Formulations

- 15 30 15 + ME
- 16 8 24 + ME
- 18 18 18 + ME
- 20 20 20 + ME
- 20 10 20 + ME
- 19 19 19 + ME
- 12 12 36 + ME

PACKAGING

25 KG

Why Should We Use Performance Series?

- The Performance series is produced from extremely pure and high quality ingredients.
- All formulations contain microelements.
- Microelements are chelated with EDTA.
- Thanks to the special substances used in it, it provides better intake of fertilizer.
- Thanks to the anti caking in it, the hardening of the fertilizer is prevented.
- It is completely soluble in water and can be taken by the plant completely.
- It does not contain Chlorine (Cl), Sodium (Na) and heavy metals.
- Low-biuret Prile Urea is used in our urea-containing products.
- It can be used easily in soils with high pH.

It has been made stronger thanks to the special substances in the new generation performance series produced from high quality raw materials. It is very easy to take and transport macro and micro nutrients in the performance series. It is a series that is 100% water soluble and leaves no residue. It does not cause clogging problems in drip and sprinkler systems, thus increasing the life of irrigation systems. Since it does not contain heavy metals, it does not cause salt accumulation in irrigation systems. In this way, the Performance Series is used in all development stages of the plant. Pollination and caking do not occur due to the use of anticaking in the Performance Series.

16 - 8 - 24 + ME	15 - 30 - 15 + ME	18 - 18 - 18 + ME	20 - 10 - 20 + ME	20 - 20 - 20 + ME	19 - 19 - 19 + ME
%16 Nitrogen	%15 Nitrogen	%18 Nitrogen	%20 Nitrogen	%20 Nitrogen	%19 Nitrogen
% 6,7 Ammonium Nitrogen (NH ₄ -N) % 9,3 Urea Nitrogen (NH ₂ -N)	% 7 Ammonium Nitrogen (NH ₄ -N) % 8 Urea Nitrogen (NH ₂ -N)	% 5,6 Ammonium Nitrogen (NH ₄ -N % 12,4 Urea Nitrogen (NH ₂ -N)	% 5,2 Ammonium Nitrogen (NH ₄ -N) % 14,8 Urea Nitrogen (NH ₂ -N)	% 3,9 Ammonium Nitrogen (NH ₄ -N) % 16,1 Urea Nitrogen (NH ₂ -N)	% 5 Ammonium Nitrogen (NH ₄ -N) % 14 Urea Nitrogen (NH ₂ -N)
%8 Water Soluble Phosphorus Pentaoxide (P ₂ O ₅)	% 30 Water Soluble Phosphorus Pentaoxide (P ₂ O ₅)	% 18 Water Soluble Phosphorus Pentaoxide (P ₂ O ₅)		% 20 Water Soluble Phosphorus Pentaoxide (P ₂ O ₅)	% 19 Water Soluble Phosphorus Pentaoxide (P ₂ 0 ₅)
%24 Water Soluble Potassium Oxide (K ₂ 0)	% 15 Water Soluble Potassium Oxide (K ₂ 0)	% 18 Water Soluble Potassium Oxide (K ₂ 0)	% 20 Water Soluble Potassium Oxide (K ₂ 0)	% 20 Water Soluble Potassium Oxide (K ₂ 0)	% 19 Water Soluble Potassium Oxide (K ₂ 0)
Water Soluble %0,02 Boron (B) Water Soluble %0,02 Copper (Cu) Water Soluble %0,04 Iron (Fe) Water Soluble %0,02 Manganese (Mn)	Water Soluble %0,02 Boron (B) Water Soluble %0,02 Copper (Cu) Water Soluble %0,04 Iron (Fe) Water Soluble %0,02 Manganese (Mn)	Water Soluble %0,02 Boron (B) Water Soluble %0,02 Copper (Cu) Water Soluble %0,04 Iron (Fe) Water Soluble %0,02 Manganese (Mn)	Water Soluble %0,02 Boron (B) Water Soluble %0,02 Copper (Cu) Water Soluble %0,04 Iron (Fe) Water Soluble %0,02 Manganese (Mn)	Water Soluble %0,02 Boron (B) Water Soluble %0,02 Copper (Cu) Water Soluble %0,04 Iron (Fe) Water Soluble %0,02 Manganese (Mn)	Water Soluble %0,02 Boron (B) Water Soluble %0,02 Copper (Cu) Water Soluble %0,04 Iron (Fe) Water Soluble %0,02 Manganese (Mn)
Water Soluble %0,002 Molybdenum (Mo) Water Soluble %0,03 Zinc (Zn)	Water Soluble %0,002 Molybdenum (Mo) Water Soluble %0,03 Zinc (Zn)	Water Soluble 90,002 Molybdenum (Mo) Water Soluble 90,03 Zinc (Zn)	Water Soluble %0,002 Molybdenum (Mo) Water Soluble %0,03 Zinc (Zn)	Water Soluble %0,002 Molybdenum (Mo) Water Soluble %0,03 Zinc (Zn)	Water Soluble %0,002 Molybdenum (Mo) Water Soluble %0,03 Zinc (Zn)

NOTE:

PRODUCTTYPE	IMPLEMENTATION PERIOD	DRIP / IRRIGATION	FROM SOIL
Citrus	Whenever needed	150-200 gr/100 lt water	2-5 kg /1000 m2
Apple, Pear etc. Plum, Pomegranate	After flowering	150-200 gr/100 lt water	2-5 kg /1000 m2
Peach, Apricot, Cherry, Sour Cherry,	After flowering	150-200 gr/100 lt water	2-5 kg /1000 m2
Bond	After the first leaf is formed	150-200 gr/100 lt water	2-5 kg /1000 m2
Pistachio, Hazelnut	immediately after flowering	100-150 gr/100 lt water	2-5 kg /1000 m2
Olives	whenever needed	100-150 gr/100 lt water	2-5 kg /1000 m2
Banana	whenever needed	100-150 gr/100 lt water	2-5 kg /1000 m2
Kiwi, Fig	whenever needed	100-150 gr/100 lt water	2-5 kg /1000 m2
Tomato pepper	whenever needed	50-100 gr/100 lt water	2-5 kg /1000 m2
Cucumber, Eggplant	whenever needed	50-100 gr/100 lt water	2-5 kg /1000 m2
Melon watermelon	whenever needed	50-100 gr/100 lt water	2-5 kg /1000 m2
Cut Flowers	whenever needed	50-100 gr/100 lt water	2-5 kg /1000 m2
Lentil	From the first release	70-100 gr/100 lt water	-//
Peanut	From the first release	100-150 gr/100 lt water	-
Cotton, Sunflower, Corn, Canola etc.	From the first release	100-150 gr/100 lt water	-
Sugar Beet, Tobacco	From the first release	100-150 gr/100 lt water	-
Fruit Saplings	whenever needed	150-200 gr/100 lt water	2-5 kg /1000 m2
Cereals	During the fraternization period	200-250 gr/100 lt water	-
Green Spaces	It is applied 2-3 times as needed.	200-300 gr/100 lt water	-

SELECTION S E R I E S

Formulations

- 15 30 15 + ME
- 16 8 24 + ME
- 18 18 18 + ME
- 20 20 20 + ME
- 20 10 20 + ME
- 11 0 40 + ME
- 30 10 10 + ME
- 13 40 13 + ME

PACKAGING

25 KG

Why Should We Use Selection?

- The Selection series is produced from extremely pure and high quality raw materials.
- All formulations contain microelements.
- Microelements are chelated with EDTA.
- Thanks to the special substances used in it, it provides better intake of fertilizer.
- Thanks to the anticaking in it, the hardening of the fertilizer is prevented.
- It is completely soluble in water and can be taken by the plant completely.
- It does not contain Chlorine (CI), Sodium (Na) and heavy metals.
- Low-biuret Prile Urea is used in our urea-containing products.
- It can be used easily in soils with high pH.

It has been made stronger thanks to the special substances in the new generation Selection Series produced from high quality raw materials. It is very easy to take and transport the macro and micro nutrients in the Selection series. It is a series that is 100% water soluble and leaves no residue. It does not cause clogging problems in drip and sprinkler systems, thus increasing the life of irrigation systems. Since it does not contain heavy metals, it does not cause salt accumulation in irrigation systems. In this way, SeSeries uses the plant in all development stages. Pollination and caking do not occur due to the use of anticaking in the Selection Series.

16 - 8 - 24 +	ME	15 - 30 - 15 +	ME	18 - 18 - 18 + 1	ME	20 - 10 - 20 +	ME	20 - 20 - 20 +	ME	11 - 0 - 40 + ME		13 - 40 - 13	+ ME	30 - 10 - 10 -	- ME
%16 Nitrogen		%15 Nitrogen		%18 Nitrogen		%20 Nitrogen		%20 Nitrogen		%11 Nitrogen		%13 Nitrog	en	%30 Nitroge	n
% 6,5 Ammonium Nitrogen % 6,5 Nitrate Nitrogen (NO3 % 3 Urea Nitrogen (NH2-N	-N)	% 7,4 Ammonium Nitrogen % 4,2 Nitrate Nitrogen (NO3- % 3,4 Urea Nitrogen (NH2-N	-N)	% 6,4 Ammonium Nitrogen % 5 Nitrate Nitrogen (NO: % 6,6 Urea Nitrogen (NH2-I	3-N)	% 5,9 Ammonium Nitrogen (% 5,6 Nitrate Nitrogen (NO3- %8,5 Urea Nitrogen (NH2-N)	N)	% 3,9 Ammonium Nitrogen % 5,6 Nitrate Nitrogen (NO3 % 10,5 Urea Nitrogen (NH2-N	3-N)	% 3,5 Ammonium Nitrogen (NH % 7,5 Nitrate Nitrogen (NO3-N)	1-N)	% 8,3 Ammonium Nitro % 4,7 Nitrate Nitrogen (% 4,5 Ammonium Nitroge % 2,5 Nitrate Nitrogen (NO % 23 Urea Nitrogen (NH2	3-N)
%8 Water Soluble Phosphorus Pent (P ₂ O ₅)	taoxide	% 30 Water Soluble Phosphorus Pent (P ₂ 0 ₅)	aoxide	% 18 Water Soluble Phosphorus Pent (P ₂ O ₅)	aoxide	% 10 Water Soluble Phosphorus Pentaoxide (P ₂ 0 ₅)		% 20 Water Soluble Phosphorus Pentaoxide (P ₂ O ₅)				% 40 Water Soluble Phosphorus Pentaoxide (P ₂ O ₅)	e	% 10 Water Soluble Phosphorus Pentaoxide (P ₂ O ₅)	
%24 Water Soluble Potassium Oxi (K ₂ 0)		% 15 Water Soluble Potassium Oxio (K ₂ 0)	le	% 18 Water Soluble Potassium Oxio (K ₂ 0)		% 20 Water Soluble Potassium Oxio (K ₂ 0)		% 20 Water Soluble Potassium Oxio (K ₂ 0)		% 40 Water Soluble Potassium Oxide (K ₂ 0)		% 13 Water Solul Potassium ((K ₂ 0)		% 10 Water Solul Potassium (K ₂ 0)	
Water Soluble Boron (B)	%0,02	Water Soluble Boron (B)	%0,02	Water Soluble Boron (B)	%0,02	Water Soluble Boron (B)	%0,02	Water Soluble Boron (B)	%0,02	Water Soluble Boron (B) 960	,02	Water Soluble Boron (B)	%0,02	Water Soluble Boron (B)	%0,02
Water Soluble Copper (Cu)	%0,02	Water Soluble Copper (Cu)	%0,02	Water Soluble Copper (Cu)	%0,02	Water Soluble Copper (Cu)	%0,02	Water Soluble Copper (Cu)	%0,02	Water Soluble Copper (Cu) 960	,02	Water Soluble Copper (Cu)	%0,02	Water Soluble Copper (Cu)	%0,02
Water Soluble Iron (Fe)	%0,04	Water Soluble Iron (Fe)	%0,04	Water Soluble Iron (Fe)	%0,04	Water Soluble Iron (Fe)	%0,04	Water Soluble Iron (Fe)	%0,04		,04	Water Soluble Iron (Fe)	%0,04	Water Soluble Iron (Fe)	%0,04
Water Soluble Manganese (Mn)	%0,02	Water Soluble Manganese (Mn)	%0,02	Water Soluble Manganese (Mn)	%0,02	Water Soluble Manganese (Mn)	%0,02	Water Soluble Manganese (Mn)	%0,02	Water Soluble Molybdenum (Mo) 960	,002	Water Soluble Manganese (M	n) %0,04	Water Soluble Manganese (Mn)	%0,02
Water Soluble Molybdenum (Mo)	%0,002	Water Soluble Molybdenum (Mo)	%0,002	Water Soluble Molybdenum (Mo)	%0,002	Water Soluble Molybdenum (Mo)	%0,002	Water Soluble Molybdenum (Mo)	%0,002	Water Soluble Zinc (Zn) %(,03	Water Soluble Molybdenum (Mo) %0,004	Water Soluble Molybdenum (Mo	%0,002
Water Soluble Zinc (Zn)	%0,03	Water Soluble Zinc (Zn)	%0,03	Water Soluble Zinc (Zn)	%0,03	Water Soluble Zinc (Zn)	%0,03	Water Soluble Zinc (Zn)	%0,03			Water Soluble Zinc (Zn)	%0,06	Water Soluble Zinc (Zn)	%0,03

NOTE:		

PRODUCT TYPE	IMPLEMENTATION PERIOD	DRIP / IRRIGATION	FROM SOIL
Citrus	Whenever needed	150-200 gr/100 lt water	2-5 kg /1000 m2
Apple, Pear etc. Plum, Pomegranate	After flowering	150-200 gr/100 lt water	2-5 kg /1000 m2
Peach, Apricot, Cherry, Sour Cherry,	After flowering	150-200 gr/100 lt water	2-5 kg /1000 m2
Bond	After the first leaf is formed	150-200 gr/100 lt water	2-5 kg /1000 m2
Pistachio, Hazelnut	immediately after flowering	100-150 gr/100 lt water	2-5 kg /1000 m2
Olives	whenever needed	100-150 gr/100 lt water	2-5 kg /1000 m2
Banana	whenever needed	100-150 gr/100 lt water	2-5 kg /1000 m2
Kiwi, Fig	whenever needed	100-150 gr/100 lt water	2-5 kg /1000 m2
Tomato pepper	whenever needed	50-100 gr/100 lt water	2-5 kg /1000 m2
Cucumber, Eggplant	whenever needed	50-100 gr/100 lt water	2-5 kg /1000 m2
Melon watermelon	whenever needed	50-100 gr/100 lt water	2-5 kg /1000 m2
Cut Flowers	whenever needed	50-100 gr/100 lt water	2-5 kg /1000 m2
Lentil	From the first release	70-100 gr/100 lt water	-
Peanut	From the first release	100-150 gr/100 lt water	-
Cotton, Sunflower, Corn, Canola etc.	From the first release	100-150 gr/100 lt water	-
Sugar Beet, Tobacco	From the first release	100-150 gr/100 lt water	-
Fruit Saplings	whenever needed	150-200 gr/100 lt water	2-5 kg /1000 m2
Cereals	During the fraternization period	200-250 gr/100 lt water	-
Green Spaces	It is applied 2-3 times as needed.	200-300 gr/100 lt water	-

STRONGMIX S E R I E S

Formulations

- 10 52 10
- 33 5 0 + 11 (S) + ME
- 20 20 20 + ME
- 18 18 18 + ME
- 3 37 37 + ME
- 10 10 40 + ME

PACKAGING

25 KG

Why Should We Use Strongmix?

- Strongmix series is produced from extremely pure and high quality raw materials.
- All formulations contain microelements.
- Microelements are chelated with EDTA.
- Thanks to the special substances used in it, it provides better intake of fertilizer.
- Thanks to the anticaking in it, the hardening of the fertilizer is prevented.
- It is completely soluble in water and can be taken by the plant completely.
- It does not contain Chlorine (Cl), Sodium (Na) and heavy metals.
- Low-biuret Prile Urea is used in our urea-containing products.
- It can be used easily in soils with high pH.

It has been made stronger thanks to the special substances in the new generation Strongmix series produced from high quality raw materials. It is very easy to take and transport macro and micro nutrients in the Strongmix series. It is a series that is 100% water soluble and leaves no residue. It does not cause clogging problems in drip and sprinkler systems, thus increasing the life of irrigation systems. Since it does not contain heavy metals, it does not cause salt accumulation in irrigation systems. In this way, the Strongmix Series is used in all development stages of the plant. Pollination and caking do not occur due to the use of anticaking in the Strongmix Series.

10 - 52 - 10	33 - 5 - 0 + 11 (S) + ME	18 - 18 - 18 + ME	3 - 37 - 37 + ME	20 - 20 - 20 + ME	10 - 10 - 40 + ME
%10 Nitrogen	%33 Nitrogen	%18 Nitrogen	%3 Nitrogen	%20 Nitrogen	%19 Nitrogen
% 10 Ammonium Nitrogen (NH ₄ -N)	%10,5 Ammonium Nitrogen (NH ₄ -N) % 22,5 Urea Nitrogen (NH ₂ -N)	% Ammonium Nitrogen (NH ₄ -N) % Urea Nitrogen (NH ₂ -N)	% 3 Nitrate Nitrogen (NO ₃ -N)	 % Ammonium Nitrogen (NH₄-N) % Urea Nitrogen (NH₂-N) 	% 5 Ammonium Nitrogen (NH₄-N)% 14 Urea Nitrogen (NH₂-N)
% 52 Water Soluble Phosphorus Pentaoxide (P ₂ O ₅)	% 5 Water Soluble Phosphorus Pentaoxide (P ₂ O ₅)	% 18 Water Soluble Phosphorus Pentaoxide (P ₂ O ₅)	% 37 Water Soluble Phosphorus Pentaoxide (P ₂ 0 ₅)	% 20 Water Soluble Phosphorus Pentaoxide (P ₂ 0 ₅)	% 19 Water Soluble Phosphorus Pentaoxide (P ₂ O ₅)
%10 Water Soluble Potassium Oxide (K ₂ 0)	% 11 Water Soluble Sulfur (S)	% 18 Water Soluble Potassium Oxide (K ₂ 0)	% 37 Water Soluble Potassium Oxide (K ₂ 0)	% 20 Water Soluble Potassium Oxide (K ₂ 0)	% 19 Water Soluble Potassium Oxide (K ₂ 0)
	Water Soluble %0,01 Boron (B) Water Soluble %0,009 Copper (Cu) Water Soluble %0,03 Iron (Fe) Water Soluble %0,01 Manganese (Mn) Water Soluble %0,002 Molybdenum (Mo) Water Soluble %0,03 Zinc (Zn)	Water Soluble %0,02 Boron (B) Water Soluble %0,02 Copper (Cu) Water Soluble %0,02 Iron (Fe) Water Soluble %0,02 Manganese (Mn) Water Soluble %0,002 Molybdenum (Mo) Water Soluble %0,004 Zinc (Zn)	Water Soluble %0,02 Boron (B) Water Soluble %0,02 Copper (Cu) Water Soluble %0,02 Iron (Fe) Water Soluble %0,02 Manganese (Mn) Water Soluble %0,002 Molybdenum (Mo) Water Soluble %0,04 Zinc (Zn)	Water Soluble %0,02 Boron (B) Water Soluble %0,02 Copper (Cu) Water Soluble %0,04 Iron (Fe) Water Soluble %0,02 Manganese (Mn) Water Soluble %0,02 Molybdenum (Mo) Water Soluble %0,03 Zinc (Zn)	Water Soluble Boron (B) Water Soluble Copper (Cu) Water Soluble Iron (Fe) Water Soluble Manganese (Mn) Water Soluble Mo,02 Manganese (Mn) Water Soluble Mo,002 Molybdenum (Mo) Water Soluble Wo,003 Zinc (Zn)

NOTE:

•			
PRODUCT TYPE	IMPLEMENTATION PERIOD	DRIP / IRRIGATION	FROM SOIL
Citrus	Whenever needed	150-200 gr/100 lt water	2-5 kg /1000 m2
Apple, Pear etc. Plum, Pomegranate	After flowering	150-200 gr/100 lt water	2-5 kg /1000 m2
Peach, Apricot, Cherry, Sour Cherry,	After flowering	150-200 gr/100 lt water	2-5 kg /1000 m2
Bond	After the first leaf is formed	150-200 gr/100 lt water	2-5 kg /1000 m2
Pistachio, Hazelnut	immediately after flowering	100-150 gr/100 lt water	2-5 kg /1000 m2
Olives	whenever needed	100-150 gr/100 lt water	2-5 kg /1000 m2
Banana	whenever needed	100-150 gr/100 lt water	2-5 kg /1000 m2
Kiwi, Fig	whenever needed	100-150 gr/100 lt water	2-5 kg /1000 m2
Tomato pepper	whenever needed	50-100 gr/100 lt water	2-5 kg /1000 m2
Cucumber, Eggplant	whenever needed	50-100 gr/100 lt water	2-5 kg /1000 m2
Melon watermelon	whenever needed	50-100 gr/100 lt water	2-5 kg /1000 m2
Cut Flowers	whenever needed	50-100 gr/100 lt water	2-5 kg /1000 m2
Lentil	From the first release	70-100 gr/100 lt water	-
Peanut	From the first release	100-150 gr/100 lt water	-
Cotton, Sunflower, Corn, Canola etc.	From the first release	100-150 gr/100 lt water	-
Sugar Beet, Tobacco	From the first release	100-150 gr/100 lt water	-
Fruit Saplings	whenever needed	150-200 gr/100 lt water	2-5 kg /1000 m2
Cereals	During the fraternization period	200-250 gr/100 lt water	-
Green Spaces	It is applied 2-3 times as needed.	200-300 gr/100 lt water	-

- 3 37 37 + ME
- 10 52 10 + ME
- 10 10 40 + ME

PACKAGING

1 KG

5 KG

Why Should We Use Strognmix?

Strongmix Series foliar fertilizers are foliar applied fertilizers that contain the nutrients that plants need in the form they can take.

It responds to different needs in different periods of plant development because it contains different proportions of NPK, which is the basis of plant nutrients.

The formulations are enriched with various trace elements that the plant may need. The trace elements contained in Strongmix Foliar Fertilizers are chelated with EDTA.

The purpose of fertilization is the same in foliar and soil fertilization, but there are periods when foliar fertilization is more effective according to the amount of nutrients needed and the speed of the applied nutrients.

Leaf fertilizers increase the effectiveness of soil fertilizers.

Especially in the period when deficiencies are seen, leaf fertilizers should be a reason for preference because they work faster in meeting the urgent nutritional needs.

Factors such as soil pH, moisture and temperature extremes can make it difficult for the plant to absorb the applied nutrients.

Foliar fertilization is not affected by such factors.

It can be easily taken by the plant.

NOT:

3 - 37 - 37	7 + ME	10- 10 -	· 40 + ME		10 - 52	- 10 + ME
%3	Nitrogen	%10	Nitrogen		%10	Nitrogen
% 3	Nitrate Nitrogen (NO ₃ -N)	% 3 % 7	Ammonium Nitrogen (NH ₄ -N Nitrate Nitrogen (NO ₃ -N)	N)	% 10	Ammonium Nitrogen (NH ₄ -N)
Р	Vater Soluble Phosphorus Pentaoxide P ₂ O ₅)		Water Soluble Phosphorus Pentaoxide (P ₂ O ₅)		,,,,	Water Soluble Phosphorus Pentaoxide (P ₂ O ₅)
Water Soluble Water Soluble Water Soluble	e Copper (Cu) %0,02	Water Solu Water Solu Water Solu	Water Soluble Potassium Ox (K ₂ 0) uble Boron (B) %0,0 uble Copper (Cu) %0,0 uble Iron (Fe) %0,0 uble Manganese (Mn) %0,0	02 02 04	, , ,	Water Soluble Potassium Oxide (K ₂ 0)
Water Soluble Water Soluble	e Molybdenum (Mo) %0,002 e Zinc (Zn) %0,04		uble Molybdenum (Mo) %0,0 uble Zinc (Zn) %0,0			

•		
PRODUCT	IMPLEMENTATION PERIOD	FORM LEAVES
Citrus - Olive - Vineyard	Before FloweringWhen Fruits Reach Scatter Size	150-200 cc / 100 lt water
Apple - Pear - Peach - Apricot - Cherry - Cherry and Pomegranate etc.	Before and After Flowering	150-200 cc / 100 lt water
Banana - Kiwi - Fig - Tomato - Pepper - Cucumber - Eggplant - Cut Flower Rack	Before FloweringDuring Fruit Growth Period	150-200 cc / 100 lt water
Lentils - Chickpeas - Peanuts	Before FloweringDuring Fruit Growth Period	150-200 cc lt/da
Sugar beet	4 - 6 Leaf PeriodRoot Formation Period	150-200 cc lt/da
Melon watermelon	10 Days After PlantingBefore Flowering	150-200 cc / 100 lt water
Cotton - Sunflower - Corn - Canola etc.	 When 20 - 40 cm Paint Reaches When 50 - 70 cm Paint Reaches 	150-200 cc / 100 lt water
Tea	After Every Form	150-200 cc / 100 lt water
Fruit Saplings	Rooting PeriodWhen the sprouts reach 10 cm	150-200 cc / 100 lt water
Paddy	In the Period of Brotherhood and	150 200 / 100 ltt-
Cereals Green Field Plants	Stagnation • After Every Form	150-200 cc / 100 lt water 150-200 cc / 100 lt water

SELECTION LEAF FERTILIZER SERIESH

Formulations

- 13 40 13 + ME
- 30 10 10 + ME
- 20 20 20 + ME

PACKAGING

1 K(

5 KG

Why Should We Use Selection?

Selection Series foliar fertilizers are foliar fertilizers that contain the nutrients needed by plants in the form they can take.

It responds to different needs in different periods of plant development because it contains different proportions of NPK, which is the basis of plant nutrients.

The formulations are enriched with various trace elements that the plant may need. The trace elements in SELECTION Foliar Fertilizers are chelated with EDTA.

The purpose of fertilization is the same in foliar and soil fertilization, but there are periods when foliar fertilization is more effective according to the amount of nutrients needed and the speed of the applied nutrients.

Leaf fertilizers increase the effectiveness of soil fertilizers.

Especially in the period when deficiencies are seen, leaf fertilizers should be a reason for preference because they work faster in meeting the urgent nutritional needs.

Factors such as soil pH, moisture and temperature extremes can make it difficult for the plant to absorb the applied nutrients.

Foliar fertilization is not affected by such factors.

It can be easily taken by the plant.

13 - 40 - 13 + ME	30 - 10 - 10 + ME	20 - 20 - 20 + ME
%13 Nitrogen	%30 Nitrogen	%20 Nitrogen
% 8,3 Ammonium Nitrogen (NH ₄ -N) % 4,7 Nitrate Nitrogen (NO ₃ -N)	% 4,5 Ammonium Nitrogen (NH ₄ -N) % 2,5 Nitrate Nitrogen (NO ₃ -N) %23 Urea Nitrogen (NH ₂ -N)	% 3,9 Ammonium Nitrogen (NH ₄ -N) % 5,6 Nitrate Nitrogen (NO ₃ -N) %10,5 Urea Nitrogen (NH ₂ -N)
% 40 Water Soluble Phosphorus Pentaoxide (P ₂ O ₅)	% 10 Water Soluble Phosphorus Pentaoxide (P ₂ O ₅)	% 20 Water Soluble Phosphorus Pentaoxide (P ₂ O ₅)
% 13 Water Soluble Potassium Oxide (K₂0)	% 10 Water Soluble Potassium Oxide (K ₂ 0)	% 20 Water Soluble Potassium Oxide (K₂0)
Water Soluble Boron (B) %0,02 Water Soluble Copper (Cu) %0,02 Water Soluble Iron (Fe) %0,02 Water Soluble Manganese (Mn) %0,04 Water Soluble Molybdenum (Mo) %0,004 Water Soluble Zinc (Zn) %0,06	Water Soluble Boron (B)	Water Soluble Boron (B) %0,02 Water Soluble Copper (Cu) %0,02 Water Soluble Iron (Fe) %0,04 Water Soluble Manganese (Mn) %0,02 Water Soluble Molybdenum (Mo) %0,002 Water Soluble Zinc (Zn) %0,03

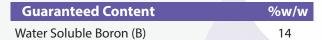
NOT:

Banana - Kiwi - Fig - Tomato - Pepper - Cucumber - Eggplant - Cut Flower Rack Lentils - Chickpeas - Peanuts - Before Flowering - During Fruit Growth Period Sugar beet - 4 - 6 Leaf Period - Root Formation Period Melon watermelon - 10 Days After Planting - Before Flowering Cotton - Sunflower - Corn - Canola etc When 20 - 40 cm Paint Reaches - When 50 - 70 cm Paint Reaches Tea - After Every Form - 150-200 cc / - Rooting Period - When the sprouts reach 10 cm - 150-200 cc / - When 150-200 cc / - When 150-200 cc / - When 150-200 cc / - When 150-200 cc / - When 150-200 cc /	
 When Fruits Reach Scatter Size Apple - Pear - Peach - Apricot - Cherry - Before and After Flowering 150-200 cc / Cherry and Pomegranate etc. Banana - Kiwi - Fig - Tomato - Pepper - Before Flowering During Fruit Growth Period Lentils - Chickpeas - Peanuts Before Flowering During Fruit Growth Period Sugar beet 4 - 6 Leaf Period Root Formation Period Melon watermelon 10 Days After Planting Before Flowering Cotton - Sunflower - Corn - Canola etc. When 20 - 40 cm Paint Reaches When 50 - 70 cm Paint Reaches After Every Form 150-200 cc / Rooting Period When the sprouts reach 10 cm 150-200 cc / 	ES
Apple - Pear - Peach - Apricot - Cherry - Cherry and Pomegranate etc. Banana - Kiwi - Fig - Tomato - Pepper - Cucumber - Eggplant - Cut Flower Rack Lentils - Chickpeas - Peanuts Sugar beet Melon watermelon Cotton - Sunflower - Corn - Canola etc. - Before Flowering - During Fruit Growth Period - Root Formation Period - Root Flowering - Dury After Planting - Before Flowering - When 20 - 40 cm Paint Reaches - When 50 - 70 cm Paint Reaches - After Every Form - Rooting Period - Rooting Period - Rooting Period - When the sprouts reach 10 cm - 150-200 cc / - When the sprouts reach 10 cm - 150-200 cc / - When the sprouts reach 10 cm - 150-200 cc / - When the sprouts reach 10 cm - 150-200 cc / - When the sprouts reach 10 cm - 150-200 cc / - When the sprouts reach 10 cm	00 It water
Cherry and Pomegranate etc. Banana - Kiwi - Fig - Tomato - Pepper - Cucumber - Eggplant - Cut Flower Rack Lentils - Chickpeas - Peanuts - Before Flowering - During Fruit Growth Period Sugar beet - 4 - 6 Leaf Period - Root Formation Period Melon watermelon - 10 Days After Planting - Before Flowering Cotton - Sunflower - Corn - Canola etc When 20 - 40 cm Paint Reaches - When 50 - 70 cm Paint Reaches Tea - After Every Form - 150-200 cc / Fruit Saplings - Rooting Period - When the sprouts reach 10 cm - 150-200 cc / - When 150-200 cc / - When 150-200 cc / - When 150-200 cc / - Rooting Period - When 150-200 cc / - When 150-200 cc / - When 150-200 cc /	
Cucumber - Eggplant - Cut Flower Rack Lentils - Chickpeas - Peanuts Before Flowering During Fruit Growth Period Sugar beet A - 6 Leaf Period Root Formation Period Melon watermelon In Days After Planting Sefore Flowering Cotton - Sunflower - Corn - Canola etc. When 20 - 40 cm Paint Reaches When 50 - 70 cm Paint Reaches Tea After Every Form T50-200 cc / Rooting Period When the sprouts reach 10 cm T50-200 cc / When 150-200 cc /	00 lt water
Cucumber - Eggplant - Cut Flower Rack Lentils - Chickpeas - Peanuts During Fruit Growth Period During Fruit Growth Period During Fruit Growth Period Sugar beet 4 - 6 Leaf Period Root Formation Period Melon watermelon 150-200 cc / Root Formation Period 150-200 cc / Before Flowering Cotton - Sunflower - Corn - Canola etc. When 20 - 40 cm Paint Reaches When 50 - 70 cm Paint Reaches Tea After Every Form 150-200 cc / When 50 - Rooting Period Rooting Period When the sprouts reach 10 cm	
Lentils - Chickpeas - Peanuts • Before Flowering • During Fruit Growth Period Sugar beet • 4 - 6 Leaf Period • Root Formation Period Melon watermelon • 10 Days After Planting • Before Flowering Cotton - Sunflower - Corn - Canola etc. • When 20 - 40 cm Paint Reaches • When 50 - 70 cm Paint Reaches Tea • After Every Form • Rooting Period • When the sprouts reach 10 cm	00 lt water
Puring Fruit Growth Period Sugar beet 4 - 6 Leaf Period Root Formation Period Melon watermelon 150-200 cc / Before Flowering Cotton - Sunflower - Corn - Canola etc. When 20 - 40 cm Paint Reaches When 50 - 70 cm Paint Reaches Tea After Every Form 150-200 cc / Rooting Period Rooting Period When the sprouts reach 10 cm 150-200 cc /	
Sugar beet • 4 - 6 Leaf Period • Root Formation Period Melon watermelon • 10 Days After Planting • Before Flowering Cotton - Sunflower - Corn - Canola etc. • When 20 - 40 cm Paint Reaches • When 50 - 70 cm Paint Reaches Tea • After Every Form 150-200 cc / Fruit Saplings • Rooting Period • When the sprouts reach 10 cm	da
• Root Formation Period Melon watermelon • 10 Days After Planting • Before Flowering Cotton - Sunflower - Corn - Canola etc. • When 20 - 40 cm Paint Reaches • When 50 - 70 cm Paint Reaches Tea • After Every Form 150-200 cc / Fruit Saplings • Rooting Period • When the sprouts reach 10 cm	
Melon watermelon • 10 Days After Planting • Before Flowering Cotton - Sunflower - Corn - Canola etc. • When 20 - 40 cm Paint Reaches • When 50 - 70 cm Paint Reaches Tea • After Every Form 150-200 cc / Rooting Period • When the sprouts reach 10 cm	da
• Before Flowering Cotton - Sunflower - Corn - Canola etc. • When 20 - 40 cm Paint Reaches • When 50 - 70 cm Paint Reaches Tea • After Every Form 150-200 cc / Fruit Saplings • Rooting Period • When the sprouts reach 10 cm	
Cotton - Sunflower - Corn - Canola etc. • When 20 - 40 cm Paint Reaches • When 50 - 70 cm Paint Reaches Tea • After Every Form 150-200 cc / • Rooting Period • When the sprouts reach 10 cm	00 It water
 When 50 - 70 cm Paint Reaches Tea After Every Form Fruit Saplings Rooting Period When the sprouts reach 10 cm 150-200 cc / 	
Tea • After Every Form 150-200 cc / Fruit Saplings • Rooting Period • When the sprouts reach 10 cm 150-200 cc /	00 It water
Fruit Saplings Rooting Period When the sprouts reach 10 cm 150-200 cc /	
• When the sprouts reach 10 cm 150-200 cc /	00 It water
	00 lt water
Paddy • In the Period of Brotherhood and	
Cereals Stagnation 150-200 cc /	00 lt water
Green Field Plants • After Every Form 150-200 cc /	00 It water

Guaranteed Content	%w/w
Water Soluble Copper (Cu)	0,5
Water Soluble Boron (B)	1,5
Water Soluble Iron (Fe)	4
Water Soluble Manganese (Mn)	4
Water Soluble Molybdenum (Mo)	0,05
Water Soluble Zinc (Zn)	4

5 KG 10 KG

- MIX Combi is a mixture of solid microelements that dissolves completely and rapidly in water.
- Plants need micro elements as well as macro elements during their development period.
- In cases where these elements are insufficient, it has a significant effect on fruit yield and quality in applications or applications.
- MIX Combi contains these elements in a high amount and in a balanced way according to the needs of the plant.
- It is chelated with EDTA for faster absorption from the leaves and soil, as well as the addition of amino acids to increase its effectiveness even more, this difference makes MIX Combi effective and different. MIX Combi is an excellent protective and therapeutic microelement mixture that can show its effect even at low doses with high solubility that eliminates micro element deficiencies seen in plants.


PRODUCTTYPE	APPLICATION TIME	FOR THE LEAF	DRIP IRRIGATION
Citrus, Olive, Vineyard	Before Flowering	40 - 100 gr / 100 lt water	100-150 gr / 1000 lt water
	When Fruits Reach Absurd Size		
Apple, Pear, Peach, Apricot, Cherry	,Before Flowering	40 - 100 gr / 100 lt water	100-150 gr / 1000 lt water
Sour Cherry, Pomegranate etc.	After Flowering		
Banana, Kiwi, Fig, Tomato, Pepper,	Before Flowering	40 - 100 gr / 100 lt water	100-150 gr / 1000 lt water
Cucumber Eggplant, Cut Flower	During the Fruit Growth Period		
Lentils - Chickpeas - Peanuts	Before Flowering / During Fruit Growth Period	40 - 100 gr / 100 lt water	100-150 gr / 1000 lt water
Sugar beet	At 4 - 6 Leaf Period / Root Formation Period	40 - 100 gr / 100 lt water	100-150 gr / 1000 lt water
Melon, watermelon	10 Days After Planting / Before Flowering	40 - 100 gr / 100 lt water	100-150 gr / 1000 lt water
Cotton - Sunflower - Corn - Canola	When 20 - 40 cm and 50 - 70 cm Paint Reached	40 - 100 gr / 100 lt water	100-150 gr / 1000 lt water
Tea	After Every Form	40 - 100 gr / 100 lt water	100-150 gr / 1000 lt water
Fruit Saplings	Rooting Period When the sprouts reach 10 cm	40 - 100 gr / 100 lt water	100-150 gr / 1000 lt water
Paddy	In the Period of Brotherhood and Steering	40 - 100 gr / 100 lt water	100-150 gr / 1000 lt water
Cereals	In the Period of Brotherhood and Steering	40 - 100 gr / 100 lt water	100-150 gr / 1000 lt water
Green Field Plants	After Every Form	40 - 100 gr/ 100 lt water	100-150 gr / 1000 lt water

0	Kitinsan Boron is a microelement that is completely soluble in
	water and contains a high rate of boron. Thanks to its high
	availability, it is easily transported into the plant.

- It helps in flowering and pollen formation.
- Increases yield in the next fertilization.
- It increases the sugar content of fruits.
- It is effective in all plants with boron deficiency.
- It is known that many diseases in plants occur due to boron deficiency.
- In severe boron deficiency, defoliation is delayed and getadive growth points are formed.
- The shoots are short, the leaves are small and distorted.
- However, chlorosis does not appear on the leaves.
- With Kitinsan Boron, the Boron (B) need of plants in all stages is met.

1 KG

5 KG

PRODUCT TYPE	APPLICATION TIME	FOR THE LEAF	DRIP IRRIGATION
Citrus, Olive, Vineyard	Before Flowering	50 - 70 gr / 100 lt water	150-200 gr / 1000 lt c
	When Fruits Reach Absurd Size	50 - 70 gr / 100 lt water	
Apple, Pear, Peach, Apricot, Cherry	y,Before Flowering		150-200 gr / 1000 lt wate
Sour Cherry, Pomegranate etc.	After Flowering	50 - 70 gr / 100 lt water	
Banana, Kiwi, Fig, Tomato, Pepper	, Before Flowering		150-200 gr / 1000 lt wate
Cucumber Eggplant, Cut Flower	During the Fruit Growth Period	50 - 70 gr / 100 lt water	
Lentils - Chickpeas - Peanuts	Before Flowering / During Fruit Growth Period	50 - 70 gr / 100 lt water	150-200 gr / 1000 lt water
Sugar beet	At 4 - 6 Leaf Period / Root Formation Period	50 - 70 gr / 100 lt water	150-200 gr / 1000 lt water
Melon, watermelon	10 Days After Planting / Before Flowering	50 - 70 gr / 100 lt water	150-200 gr / 1000 lt water
Cotton - Sunflower - Corn - Canola	a When 20 - 40 cm and 50 - 70 cm Paint Reached	50 - 70 gr / 100 lt water	150-200 gr / 1000 lt water
Tea	After Every Form	50 - 70 gr / 100 lt water	150-200 gr / 1000 lt water
Fruit Saplings	Rooting Period When the sprouts reach 10 cm	50 - 70 gr / 100 lt water	150-200 gr / 1000 lt water
Paddy	In the Period of Brotherhood and Steering	50 - 70 gr / 100 lt water	150-200 gr / 1000 lt water
Cereals	In the Period of Brotherhood and Steering	50 - 70 gr / 100 lt water	150-200 gr / 1000 lt water
Green Field Plants	After Every Form		150-200 gr / 1000 lt water

Guaranteed Content	%w/w
Water Soluble Boron (B)	8
Water Soluble Zinc (Zn)	10
PACKAGING	

1 KG

KG

- Kitinsan Borzinc is a water-soluble fertilizer containing Boron (B) and Zinc (Zn).
- Kitinsan Borzinc provides increased yield, resistance to hot and cold, and resistance to vegetables and fruits.
- It is extremely effective in the storage durability process by providing great benefits in flowering and pollen development.
- Thanks to Kitinsan Borzinc, there is no need to use Zinc (Zn) and Boron (B) separately.

PRODUCTTYPE	APPLICATION TIME	FROM THE LEAF	DRIP IRRIGATION
Citrus, Olive, Vineyard	Before Flowering	40 - 50 gr / 100 lt water	200-250gr / 1000 lt water
	When Fruits Reach Absurd Size		
Apple, Pear, Peach, Apricot, Cherry	y,Before Flowering	40 - 50 gr / 100 lt water	r 200-250gr / 1000 lt water
Sour Cherry, Pomegranate etc.	After Flowering		
Banana, Kiwi, Fig, Tomato, Pepper,	Before Flowering	40 - 50 gr / 100 lt water	200-250gr / 1000 lt water
Cucumber Eggplant, Cut Flower	During the Fruit Growth Period		
Lentils - Chickpeas - Peanuts	Before Flowering / During Fruit Growth Period	40 - 50 gr / 100 lt water	r 200-250gr / 1000 lt water
Sugar beet	At 4 - 6 Leaf Period / Root Formation Period	40 - 50 gr / 100 lt water	r 200-250gr / 1000 lt water
Melon, watermelon	10 Days After Planting / Before Flowering	40 - 50 gr / 100 lt water	r 200-250gr / 1000 lt water
Cotton - Sunflower - Corn - Canola	When 20 - 40 cm and 50 - 70 cm Paint Reached	40 - 50 gr / 100 lt water	r 200-250gr / 1000 lt water
Tea	After Every Form	40 - 50 gr / 100 lt water	r 200-250gr / 1000 lt water
Fruit Saplings	Rooting Period When the sprouts reach 10 cm	40 - 50 gr / 100 lt water	r 200-250gr / 1000 lt water
Paddy	In the Period of Brotherhood and Steering	40 - 50 gr / 100 lt water	r 200-250gr / 1000 lt water
Cereals	In the Period of Brotherhood and Steering	40 - 50 gr / 100 lt water	r 200-250gr / 1000 lt water
Green Field Plants	After Every Form	40 - 50 gr / 100 lt wate	r 200-250gr / 1000 lt water

- Kitinsan MN-FULL is a water-soluble fertilizer containing high manganese content.
- Thanks to its high availability, it is easily transported into the plant.
- It prevents all problems caused by manganese deficiency.

Guaranteed Content	%w/w
Water Soluble Manganese (Mn)	20

1 KG

5 KG

PRODUCTTYPE	APPLICATION TIME	FOR THE LEAF	DRIP IRRIGATION
Citrus, Olive, Vineyard	Before Flowering	50 - 70 gr / 100 lt water	150-200 gr / 1000 lt c
	When Fruits Reach Absurd Size	50 - 70 gr / 100 lt water	
Apple, Pear, Peach, Apricot, Cherry	,,Before Flowering		150-200 gr / 1000 lt wat
Sour Cherry, Pomegranate etc.	After Flowering	50 - 70 gr / 100 lt water	
Banana, Kiwi, Fig, Tomato, Pepper,	Before Flowering		150-200 gr / 1000 lt wat
Cucumber Eggplant, Cut Flower	During the Fruit Growth Period	50 - 70 gr / 100 lt water	
Lentils - Chickpeas - Peanuts	Before Flowering / During Fruit Growth Period	50 - 70 gr / 100 lt water	150-200 gr / 1000 lt wat
Sugar beet	At 4 - 6 Leaf Period / Root Formation Period	50 - 70 gr / 100 lt water	150-200 gr / 1000 lt wat
Melon, watermelon	10 Days After Planting / Before Flowering	50 - 70 gr / 100 lt water	150-200 gr / 1000 lt wat
Cotton - Sunflower - Corn - Canola	When 20 - 40 cm and 50 - 70 cm Paint Reached	50 - 70 gr / 100 lt water	150-200 gr / 1000 lt wat
Tea	After Every Form	50 - 70 gr / 100 lt water	150-200 gr / 1000 lt wat
Fruit Saplings	Rooting Period When the sprouts reach 10 cm	50 - 70 gr / 100 lt water	150-200 gr / 1000 lt wat
Paddy	In the Period of Brotherhood and Steering	50 - 70 gr / 100 lt water	150-200 gr / 1000 lt wat
Cereals	In the Period of Brotherhood and Steering	50 - 70 gr / 100 lt water	150-200 gr / 1000 lt wat
Green Field Plants	After Every Form		150-200 gr / 1000 lt wat

Guaranteed Content	%w/w
Water Soluble Zinc (Zn)	15

1 KG

5 KG

- It contains high amount of zinc.
- It is a completely water-soluble, fast-acting source of zinc.
- It prevents plants from being stunted, increases plant height and stem thickness.
- It accelerates tillering and rooting in grains, and stem and branch development in vegetables and fruit trees.
- It prevents the yellowing of the leaves, premature shedding and shrinkage.
- It increases the number of shoots and fruit set in fruit trees, prevents fruit deformations. Although the zinc requirement of plants is lower than other nutrients; If there is a zinc deficiency in the soil, the yield will be low even if all other nutrients are present in sufficient quantities. Therefore, zinc directly affects the amount of product removed from the soil

PRODUCTTYPE	APPLICATION TIME	FOR THE LEAF	DRIP IRRIGATION
Citrus, Olive, Vineyard	Before Flowering	100 - 200 gr / 100 lt water	200-250 gr / 1000 lt water
	When Fruits Reach Absurd Size		
Apple, Pear, Peach, Apricot, Cherry	y,Before Flowering	100 - 200 gr / 100 lt water	200-250 gr / 1000 lt water
Sour Cherry, Pomegranate etc.	After Flowering		
Banana, Kiwi, Fig, Tomato, Pepper,	, Before Flowering	100 - 200 gr / 100 lt water	200-250 gr / 1000 lt water
Cucumber Eggplant, Cut Flower	During the Fruit Growth Period		
Lentils - Chickpeas - Peanuts	Before Flowering / During Fruit Growth Period	100 - 200 gr / 100 lt water	200-250 gr / 1000 lt water
Sugar beet	At 4 - 6 Leaf Period / Root Formation Period	100 - 200 gr / 100 lt water	200-250 gr / 1000 lt water
Melon, watermelon	10 Days After Planting / Before Flowering	100 - 200 gr / 100 lt water	200-250 gr / 1000 lt water
Cotton - Sunflower - Corn - Canola	When 20 - 40 cm and 50 - 70 cm Paint Reached	100 - 200 gr / 100 lt water	200-250 gr / 1000 lt water
Tea	After Every Form	100 - 200 gr / 100 lt water	200-250 gr / 1000 lt water
Fruit Saplings	Rooting Period When the sprouts reach 10 cm	100 - 200 gr / 100 lt water	200-250 gr / 1000 lt water
Paddy	In the Period of Brotherhood and Steering	100 - 200 gr / 100 lt water	200-250 gr / 1000 lt water
Cereals	In the Period of Brotherhood and Steering	100 - 200 gr / 100 lt water	200-250 gr / 1000 lt water
Green Field Plants	After Every Form	50 - 70 gr / 100 lt water	200-250 gr / 1000 lt water

K-MOOS HUMIE ONE

Potassium Humate

- It is a natural soil conditioner with Leonardite content.
- It increases the development and yield of the plant.
- With its regular use, it dissolves the hardening in the soil and enables the plant to root more easily.
- It regulates the movement of water and air in the soil and makes it available to the plant.
- It regulates the physical, chemical and biological properties of the soil and enables plants to develop healthier and stronger.
- Thus, it increases the quality and yield and ensures longer storage after harvest.

Guaranteed Content	%w/w
Total Organic Matter	25
Total (Humic+Fulvic) Acid	65
Water Soluble Potassium Oxide (K2O)	10
Maximum Humidity	20
рН	8-10

PACKAGING

1 KG

5 KG

10 KO

PRODUCT TYPE	APPLICATION TIME	FOR THE LEAF	DRIP IRRIGATION
Citrus, Olive, Vineyard	Before Flowering	30 - 100 gr / 100 lt water	100-250 gr / 1000 lt wate
	When Fruits Reach Absurd Size		
Apple, Pear, Peach, Apricot, Cherr	y,Before Flowering	30 - 100 gr / 100 lt water	100-250 gr / 1000 lt wate
Sour Cherry, Pomegranate etc.	After Flowering		
Banana, Kiwi, Fig, Tomato, Pepper	, Before Flowering	30 - 100 gr / 100 lt water	100-250 gr / 1000 lt wate
Cucumber Eggplant, Cut Flower	During the Fruit Growth Period		
Lentils - Chickpeas - Peanuts	Before Flowering / During Fruit Growth Period	30 - 100 gr / 100 lt water	100-250 gr / 1000 lt wate
Sugar beet	At 4 - 6 Leaf Period / Root Formation Period	30 - 100 gr / 100 lt water	100-250 gr / 1000 lt wate
Melon, watermelon	10 Days After Planting / Before Flowering	30 - 100 gr / 100 lt water	100-250 gr / 1000 lt water
Cotton - Sunflower - Corn - Canola	a When 20 - 40 cm and 50 - 70 cm Paint Reached	30 - 100 gr / 100 lt water	100-250 gr / 1000 lt water
Tea	After Every Form	30 - 100 gr / 100 lt water	100-250 gr / 1000 lt water
Fruit Saplings	Rooting Period When the sprouts reach 10 cm	30 - 100 gr / 100 lt water	100-250 gr / 1000 lt water
Paddy	In the Period of Brotherhood and Steering	30 - 100 gr / 100 lt water	100-250 gr / 1000 lt water
Cereals	In the Period of Brotherhood and Steering	30 - 100 gr / 100 lt water	100-250 gr / 1000 lt wate
Green Field Plants	After Every Form	30 - 100 gr / 100 lt water	100-250 gr / 1000 lt wate

LIFE TO YOUR SOIL To your greenhouse and field We are working to add abundance

In the innovative laboratories of Kitinsan, our engineers;
They work to find the most effective solutions using the most advanced tech
nologies for healthy crops and fertile soils.
The first step to protect human health starts with soil health

ORGANIC LIQUID FERTILIZERS

ORGANIC SOURCED PRODUCT

Containing Plant Origin Amino Acid Organic Liquid Fertilizer

Guaranteed Content	%w/w
Total Organic Matter	25
Organic Carbon	10
Organic Nitrogen	1
Free Amino Acid	10
Water Soluble Potassium Oxide	2
pH	4-6

PACKAGING

- Thanks to the free amino acids it contains, it ensures fertilization and accordingly the increase in yield, at the same time it ensures root development, rapid germination and uniform emergence of the plant.
- It ensures high fruit number and product quality, and is also used for stress relief.
- It eliminates the stress caused by herbicides and adverse climatic conditions in the autumn-winter periods, increases the endurance of the plant.

PRODUCTIVE			FROMLEAG
PRODUCTTYPE	APPLICATION TIME	DRIP IRRIGATION	FROM LEAF
All Greenhouse Vegetables	It is applied with an interval of one week from planting to the end of harvest.	1000- 1200 cc/da	100 Lt Water 250- 300 cc
All Outdoor Vegetable Gardening	It is applied in 2-3 repetitions with an interval of 15-20 days from planting.	1200- 1500 cc/da	100 Lt Water 300- 350 cc
All-Leaf Eaten Winter Vegetables (Cauliflower, Leek, Spinach, Lettuce, Curly, Aysberg etc.)	It is applied in 2-3 repetitions with an interval of 20-30 days from planting to the end of harvest.	1200- 1500 cc/da	100 Lt Water 300- 350 cc
Melon, Watermelon, Pumpkin etc.	It is applied in 2-3 repetitions with an interval of 20-30 days after planting.	1200- 1500 cc/da	100 Lt Water 300- 350 cc
Nursery, Ornamental Plants etc.	It is applied in 2-3 repetitions with an interval of 15-20 days after planting.	1200- 1500 cc/da	100 Lt Water 300- 350 cc
Apple, Pear, Pe <mark>ach, Apricot, Quince,</mark> Cherry, Sour Cherry, Al <mark>mond, Vi</mark> neyard,	Three applications are recommended: 1. Just before bud and flowering. 2. In fruit formation.		100 Lt Water 350- 400 cc
Olive and Citrus etc. in All Fruit Trees.	3. Until the end of the harvest.	Per Tree 75-100 cc	
All Industrial Crops (Corn, Soybean, Tobacco, Cotton, Sunflower, Sugarbeet)	It is applied in 2-3 repetitions with 20-day inter vals after the plants reach 10-15 cm in length.	1500- 1750 cc/da	100 Lt Water 300- 350 cc
All Field Crops (Barley, Wheat, Chickpea, Lentil etc.)	After the plants reach 10-15 cm height, it is applied in 2 repetitions with an interval of 20 days.		100 Lt Water 300- 350 cc

ORGANIC LIQUID FERTILIZERS

ORGANIC SOURCED PRODUCT

HERBAMINOS

Containing Amino Acids of Animal Origin Organic Liquid Fertilizer

Guaranteed Content	%w/w
Total Organic Matter	48
Organic Carbon	18
Total Nitrogen (N)	7
Free Amino Acids	12
рН	5,5 - 7,5
DA GIVA GINIG	

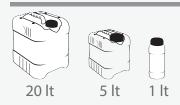
PACKAGING

Why is it used?

- Thanks to its amino acid content of animal origin, it provides a high increase in the crop. It increases the resistance of the plant. It makes the crown open, provides maximum amino acid absorption and shoot growth.
- Increases product quality and yield. Increases fruit number, quality and new branches.
- It eliminates the amino acid deficiency necessary for fruit development. It supports and accelerates the growth of the plant, even in cold periods and when the development of the plant stops.
- It does not contain heavy metals, sodium and

PRODUCTTYPE	APPLICATION TIME	DRIP IRRIGATION	FROM LEAF
All Greenhouse Vegetables (Tomato, Pepper, Eggplant, Cucumber, Bean, Melon, Waterme on, Onion, Carrot, Potato, Strawberry)	It is applied with an interval of Lone week from planting to the	1000 - 1200 cc/da	100 Lt Water 250 - 300 cc
All Outdoor Vegetable Gardening (Tomato, Pepper, Eggplant, Cucumber, Bean, Melon, Watermelon, Onion, Carrot, Potato, Strawberry)	It is applied in 2-3 repetitions with an interval of 15-20 days from planting.	1200 - 1500 cc/da	100 Lt Water 300 - 350 co
All-Leaf Eaten Winter Vegetables (Cauliflow- er, Leek, Spinach, Lettuce, Curly, Aysberg etc.)	It is applied in 2-3 repetitions with an interval of 20-30 days from planting to the end of	1200 - 1500 cc/da	100 Lt Water 300 - 350 co
Melon, Watermelon, Pumpkin etc.	Ekim dikimden itibaren 15- 20 gün ara ile 2- 3 tekerrürde uygulanır.	1200 - 1500 cc/da	100 Lt Water 300 - 350 co
Nursery, Ornamental Plants etc.	It is applied in 2-3 repetitions with an interval of 15-20 days after planting.	1200 - 1500 cc/da	100 Lt Water 300 - 350 co
Apple, Pear, Peach, Apricot, Quince, Cherry, Sour Cherry, Almond, Vineyard, Olive and Citrus etc. in All Fruit Trees.	Three applications are recommended: 1. Just before bud and flowering. 2. In fruit formation. 3. Until the end of the harvest.	1500 - 1750 cc/da or Per Tree 75-100 cc	100 Lt Water 350 - 400 cc

ORGANIC SOURCED PRODUCT


Why is it used?

- In light textured (sandy) soils, thanks to its adhesive feature, it binds the sand particles together and makes the soil consistency. Thus, both the water holding ability of the soil increases and the rapid loss of plant nutrients from the soil (washing away) is prevented.
- It prevents the formation of a cream layer in the soil. Thus, the germinated plantlets can easily come to the surface of the soil without being exposed to a physical obstacle.
- It prevents the plant from entering water stress in arid conditions. It provides more solar energy absorption by darkening the color of the soil. In the easily heated soil, the seeds germinate in a shorter time and the product comes to the harvest earlier.
- It increases the biological activity in the soil by stimulating the development and reproduction of beneficial soil microorganisms.
- It also balances the soil pH. With these properties, it transforms the nutrient elements that cannot be taken in the soil into a form that the plant can benefit from and

Guaranteed Content	%w/w	
Total Organic Matter	10	
Total Humic + Fulvic Acid	15	
Water Soluble Potassium Oxide	4	
рН	8-10	

PACKAGING

PRODUCTTYPE	APPLICATION TIME	С	FROM LEAF	FROM SOIL
Tomato-Pepper-Eggplant-Cucumber	During the transplanting of seedlings: 200 cc of Humix i 100 cc of water and the roo seedlings are immersed in t and planted. After sowing: lafter the soil is prepared for During the vegetative deve period: 2-3 applications wit intervals starting from the pthe plant height is 20-25 cm	s placed in ts of the his solution t is applied 500 - 1000 cc/da planting. lopment in 15-20 days period when	150 - 200 cc/da	2 lt/da
Watermelon, Melon, Pumpkin, Strawberry, Wheat, Barley, Paddy, Corn, Sunflower, Cotton, Potato, Sugar Beet, Carrot, Bean, Chickpea, Lentil Leafy vegetables (Lettuce, Curly, Cabbage etc.) Onion, Garlic	Before planting: It is applied is prepared for planting. During the vegetative deve period: 2-3 applications wit intervals starting from the pthe plant height is 20-25 cm	lopment 500 - 1000 cc/da n 15-20 days period when	100 - 150 cc/da	2 lt/da
Vineyard, Kiwi, Citrus, Cherry, Sour Cherry, Peach, Apricot, Plum, Apple, Pear, Quince, Olive,	It is applied during the spri development period (to the bottoms before blooming).	e root 500 - 1000 cc/da	100 - 150 cc/da	50 - 100 cc / Pe

ORGANIC LIQUID FERTILIZERS

ORGANIC SOURCED PRODUCT

SEAWEED

Other Organic Sourced Products Liquid Seaweed

Guaranteed Content	%w/w
Total Organic Matter	30
Alginic Acid	0,6
Water Soluble Potassium Oxide	5
Maximum EC (DS/M)	
рН	8-10

PACKAGING

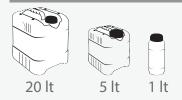
- Seaweed especially increases the resistance of the plant and accelerates its growth. It increases the resistance of the plant against diseases and harmful insects.
- The microbial activity in the soil increases and the root systems of the plant are strengthened. It accelerates the uptake of plant nutrients.
- It increases the chlorophyll level in the plant, which allows it to perform more photosynthesis. Seaweeds increase the resistance of plants against cold.
- It minimizes the negative effects of pesticides on plants and maximizes the effectiveness of the pesticide.

PRODUCTTYPE	DRIP IRRIGATION	FROM LEAF
Vegetables (tomato, cucumber, eggplant, pepper, zucchini)	200 - 250 cc / 100 lt water	500 - 1000 cc / 1000 m ²
Ornamental Plants	200 - 250 cc / 100 lt water	500 - 1000 cc / 1000 m²
Cereals (wheat, barley, oats, paddy)	200 - 250 cc / 100 lt water	500 - 1000 cc / 1000 m ²
Fruit trees	200 - 250 cc / 100 lt water	500 - 1000 cc / 1000 m ²
Industrial Crops (cotton, corn, soybean, potato, onion, tobacco,	200 - 250 cc / 100 lt water	500 - 1000 cc / 1000 m²

ORGANIC SOURCED PRODUCT

KITOWIN

Vegetable Origin Liquid Organic Fertilizer



Why is it used?

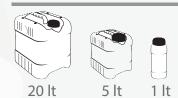
- It promotes root development of plants. It enables soil microorganisms to multiply.
- Provides water retention in light soils. It helps plants to take elements such as nitrogen, phosphorus, potassium, iron, zinc.
- It allows water and air to circulate better in the soil.

Guaranteed Content	%w/w
Total Organic Matter	40
Organic Carbon	20
Total Nitrogen (N)	3
Water Soluble Potassium Oxide	5
рН	4-6

PACKAGING

It is started to be used 10-15 days after the seedlings are planted in greenhouse and open field vegetables. It is calculated between 500 - 1000 gr per decare and continued until the end of the harvest.

In cereals, it can be applied 2-3 times from the beginning of tillering.


In hoe plants, it is applied with the calculation of 3-4 kg in 10-15 days, starting from the first hoe. In citrus and orchards, it can be applied 3-4 times depending on the situation by calculating 1-3 kg per tree.

SPREADER

BIOACTIVITY IMPROVEMENT DIFFUSER ADHESIVE

PACKAGING

Why is it used?

- It accelerates healing in plants with tissue damage. It helps soil and water improvement by binding heavy metals in the soil and water where it is used.
- It ensures that the pesticides and fertilizers used are spread homogeneously on the leaf surface; thus, no burning or nutrient accumulation occurs during fertilizer intake.
- It facilitates the uptake of vitamins and minerals in soil and water by plants.
- Formed by Molds that can produce Mycotoxins, which cause serious economic losses after harvest;
 - -AFLATOXIN
 - -OCRATOXIN
 - -TRICHOTHESEN
 - -ZEARELENON
 - -Helps prevent the formation of mold metabolites such as FUMONICIN

On the other hand, it is a good pH inhibitor. It regulates the pH of hard water.

DOC	$^{\circ}$	$\Gamma \subset C$	$A \land A \land A \vdash A$	ID ATIO	אוכ
11/1/5/4	4(a F 1	イトしし)	MIMIEL	NDATIO	71/1/2

CC/DECAR WITH DISPOSITIONING TOOLS

WITHOUT DRIP IRRIGATION Liter/decar

Fungicides, Insecticides, Acaricides, Plant Growth Regulators and Micro Nutrients

100 - 200 cc / 100 lt su

1-2 lt/da

Containing Copper Sulphate

CUPRICE 5

Copper Fertilizer Solution

Why is it used?

- It is a copper fertilizer solution containing 5% copper. Copper is one of the necessary elements for chlorophyll synthesis (green color pigment). Chlorophyll synthesis plays a role in the photosynthesis activity of the plant. Copper provides the formation of protein and vitamins in the plant.
- It has a visible effect thanks to the chitosan it contains. Chitosan accelerates the uptake of copper by the plant. Copper is chelated with chitosan. It is not toxic.
- Does not leave residue or stains. Thanks to chitosan and copper, plant resistance increases. It does not harm the bees and the harvest time is zero to the plant.
- It allows plants to have a healthy season. Thanks to the special amino acids it contains, its uptake is quite fast. It is suitable for drip or foliar use.

Guaranteed Content%w/wWater Soluble Copper (Cu)5

PRODUCT TYPE	APPLICATION TIME	ORIP / IRRIGATION	FROM SOIL
Vegetables (Tomato, Pepper, Cucumber, Eggplant Zucchini, Beans, Peas, Onions etc.)	In any period (from seedling to harvest), including flowering period, when deemed necessary	100 - 150 cc	0,5-1 lt
Strawberry, Raspberry etc	In any period (from seedling to harvest), including flowering period, when deemed necessary	100 - 150 cc/da	0,5-1 lt
Fruit trees	Any period deemed necessary, including flowering period	ls 200 cc	1-2 lt
Melon, Watermelon etc.	Any period deemed necessary, including flowering period	ls 100 - 150 cc/da	0,5-1 lt
Bond	Any period deemed necessary, including flowering period	ls 200 cc	1-2 lt
Banana	Any period deemed necessary, including flowering period	ls 200 cc	1-2 lt
Cereals (Wheat, Barley, Oats, paddy etc.)	Any period deemed necessary, including flowering period	ls 100 - 150 cc/da	-
Industrial Plants (Cumin, Anise, Cotton, Beet,	Any period deemed necessary, including flowering period	ls 100 - 150 cc/da	0,5-1 lt
Peanut, Potato etc.)		100 - 150 сс	
Cut Flowers	Any period deemed necessary, including flowering period	ls 75 - 100 cc	0,5-1 lt
Nursery Bed	Any period deemed necessary, including flowering period	ls	0,5 lt

UAN - 32

UREA AMMONIUM NITRATE FERTILIZER SOLUTION

Guaranteed Content	%w/w
Total Nitrogen (N)	32
Ammonium Nitrogen (N)	8
Nitrate Nitrogen (N)	8
Urea Nitrogen (N)	16
pH Range	4,5 – 7,5

PACKAGING

- It is a liquid fertilizer with the highest nitrogen rate (32%). High nitrogen composition; Formulated with a combination of nitrate, ammonia and urea forms.
- It is recommended for growth and development even if there is insufficient nitrogen in the soil or even if it is sufficient.
- It is an ideal food source for plants with high nitrogen needs.
- UAN applied from foliar or drip irrigation shows its effect in a short time and strengthens the vegetative part by activating the plant.

PRODUCTTYPE	APPLICATION TIME	DRIP / IRRIGATION	FROM SOIL
Citrus, Olive, Vineyard	Before Flowering	300 - 400 cc / 100 lt water	2-5 lt/da
	When Fruits Reach Absurd Size		
Apple, Pear, Peach, Apricot,	Before Flowering	300 - 400 cc / 100 lt water	2-5 lt/da
Cherry, Cherry, Pomegranate etc.	After Flowering		
Banana, Kiwi, Fig, Tomato, Pepper	;Before Flowering	300 - 400 cc / 100 lt water	2-5 lt/da
Cucumber Eggplant, Cut Flower	During the Fruit Growth Period		
Lentils - Chickpeas - Peanuts	Before Flowering / During the Fruit Growth Period	300 - 400 cc / 100 lt water	2-5 lt/da
Sugar beet	At 4 - 6 Leaf Period / Root Formation Period	300 - 400 cc / 100 lt water	2-5 lt/da
Melon, watermelon	10 Days After Planting / Before Flowering	300 - 400 cc / 100 lt water	2-5 lt/da
Cotton - Sunflower - Corn - Canol	aWhen 20 - 40 cm and 50 - 70 cm Paint Reached	300 - 400 cc / 100 lt water	2-5 lt/da
Tea	After Every Form	300 - 400 cc / 100 lt water	2-5 lt/da
Fruit Saplings	Rooting Period When the sprouts reach 10 cm	300 - 400 cc / 100 lt water	2-5 lt/da
Paddy	In the Period of Brotherhood and Steering	300 - 400 cc / 100 lt water	2-5 lt/da
Cereals	In the Period of Brotherhood and Steering	300 - 400 cc / 100 lt water	2-5 lt/da
Green Field Plantsh	After Every Form	300 - 400 cc / 100 lt water	2-5 lt/da

KITOZINC

Zinc Fertilizer Solution

Why is it used?

- It is a product that can be applied to the plant both by leaf route and applied on the soil surface in order to eliminate the zinc deficiency in the plant. It makes the leaves grow, resistant and alive.
- It prevents rosette formation in fruit trees. It supports root development.
- It gives resistance against cold and frost. It prevents flower shedding and makes the flowers more lively. It accelerates fertilization and increases quality by providing earliness in harvest.

Guaranteed Content

%w/w

Water Soluble Zinc (ZN)

7

PACKAGING

20 lt 5 lt 1 lt

PRODUCTTYPE	APPLICATION TIME	DRIP / IRRIGATION	FROM SOIL
Citrus	 Before flowering June before dump 30 days after harvest 	125 cc	2-3 lt/da
Bond	1. Before flowering 2. 25 days after 1	100 cc	1-2 lt/da
Apple, pear	 After flowering 20 days after fruiting 	100 cc	3-4 lt/da
Peach, Apricot, Cherry, Plum	 After flowering 20 days after fruiting 	100 cc	3-4 lt/da
Vegetables (tomatoes, peppers etc.)	3-4 applications at 10-15 days intervals, starting before flowering	100 - 200 сс	1-2 lt/da
Corn	1. Once just before the water	125 cc/da	2-3 lt/da
Cotton	1. Before combing2. 20 days after the first	125 cc/da	1-2 lt/da
Sugar Beet	It starts at the 6-leaf period and is applied 2 times.	150 - 200 cc	2-3 lt/da
Wheat	A single application is made during the tillering period. If necessary, the second application is made during the lifting period.	125 cc/da e	
Melon, Watermelon	Starting before flowering, 2-3 applications are mada at 15-20 days intervals.	e100 - 200 cc	2-3 lt/da
Onion, Garlic	1. When you reach 10-15 cm in height, 2-3. It is applied with an interval of 20-25 days.	150 - 200 cc	2-3 lt/da

PROGRESSIO

NPK FERTILIZER SOLUTION

Guaranteed Content	%w/w
Total Nitrogen (N)	7
Urea Nitrogen (NH2-N)	7
Water Soluble Phosphorus Pentaoxide	e 7
Water Soluble Potassium Oxide (K2O)	7
Water Soluble Copper (Cu)	0,04
Water Soluble Iron (Fe)	0,1
Water Soluble Manganese	0,1
Water Soluble Molybdenum (Mo)	0,001
Water Soluble Zinc (Zn)	0,1

PACKAGING

5 lt

1 lt

- It is a mixture that can meet the needs of the plant during its developmental stages. It accelerates the formation of photosynthesis. It enables plants to thrive.
- Thanks to the chelate form of trace elements, uptake is fast. It is chelated with Edta.
- It ensures the balanced development, growth, flowering and development of the plant.
- Thanks to the amino acid groups it contains, it is completely taken up by the plant. It can be applied without dripping, sprinkling or foliar.

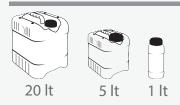
PRODUCT TYPE A	APPLICATION TIME	DRIP / IRRIGATION	FROM SOIL
Citrus, Olive, Vineyard	Before Flowering	200 - 250 cc / 100 lt water	1-3 lt/da
	When Fruits Reach Absurd Size		
Apple, Pear, Peach, Apricot,	Before Flowering	200 - 250 cc / 100 lt water	1-3 lt/da
Cherry, Cherry, Pomegranate etc.	After Flowering		
Banana, Kiwi, Fig, Tomato, Pepper,	Before Flowering	200 - 250 cc / 100 lt water	1-3 lt/da
Cucumber Eggplant, Cut Flower	During the Fruit Growth Period		
Lentils - Chickpeas - Peanuts	Before Flowering / During the Fruit Growth Period	500 cc - 1 lt/da	1-3 lt/da
Sugar beet	At 4 - 6 Leaf Period / Root Formation Period	500 cc - 1 lt/da	1-3 lt/da
Melon, watermelon	10 Days After Planting / Before Flowering	200 - 250 cc / 100 lt water	1-3 lt/da
Cotton - Sunflower - Corn - Canola	When 20 - 40 cm and 50 - 70 cm Paint Reached	200 - 250 cc / 100 lt water	1-3 lt/da
Tea	After Every Form	200 - 250 cc / 100 lt water	1-3 lt/da
Fruit Saplings	Rooting Period When the sprouts reach 10 cm	200 - 250 cc / 100 lt water	1-3 lt/da
Paddy	In the Period of Brotherhood and Steering	200 - 250 cc / 100 lt water	
Cereals	In the Period of Brotherhood and Steering	200 - 250 cc / 100 lt water	1-3 lt/da
Green Field Plantsh	After Every Form	150 - 200 cc / 100 lt water	1-3 lt/da

Why is it used?

- The trace elements in it are chelated with edta and chitosan. Its uptake by the plant is very fast.
- Thanks to the amino acids and magnesium it contains, it is quickly transported to the plant. Kitinsan Combi, which belongs to the special content, achieves fast results in increasing the number of branches, expanding the leaf surface and extending the plant height.
 - It is effective against more lively pollen and flower formation.
- It enables the vitamins and enzymes in the plant to work more actively. It is suitable for use from dripping or leaves.

Guaranteed Content	%w/w
Water Soluble Boron (B)	0,3
Water Soluble Copper (Cu)	0,5
Water Soluble Iron (Fe)	3
Water Soluble Manganese (Mn)	1
Water Soluble Molybdenum (Mo)	0,05
Water Soluble Zinc (Zn)	2

PRODUCTTYPE	APPLICATION TIME	FROM LEAF DRIP /	IRRIGATION
Citrus, Olive, Vineyard	Before Flowering	200 - 250 cc / 100 lt water	1-3 lt/da
	When Fruits Reach Absurd Size	200 200 / 100	1 2 14/-1-
Apple, Pear, Peach, Apricot, Cherry,	Before Flowering	200 - 250 cc / 100 lt water	1-3 lt/da
Sour Cherry, Pomegranate etc.	After Flowering		
Banana, Kiwi, Fig, Tomato, Pepper,	Before Flowering	200 - 250 cc / 100 lt water	1-3 lt/da
Cucumber Eggplant, Cut Flower Rack	During the Fruit Growth Period		
Lentils - Chickpeas - Peanuts	Before Flowering / During the Fruit Growth Period	500 cc - 1 lt/da	1-3 lt/da
Sugar beet	At 4 - 6 Leaf Period / Root Formation Period	500 cc - 1 lt/da	1-3 lt/da
Melon, watermelon	10 Days After Planting / Before Flowering	200 - 250 cc / 100 lt water	1-3 lt/da
Cotton - Sunflower - Corn - Canola	When 20 - 40 cm and 50 - 70 cm Paint Reached	200 - 250 cc / 100 lt water	1-3 lt/da
Tea	After Every Form	200 - 250 cc / 100 lt water	1-3 lt/da
Fruit Saplings	Rooting Period When the sprouts reach 10 cm	200 - 250 cc / 100 lt water	1-3 lt/da
Paddy	In the Period of Brotherhood and Steering	200 - 250 cc / 100 lt water	
Cereals	In the Period of Brotherhood and Steering	200 - 250 cc / 100 lt water	1-3 lt/da
Green Field Plants	After Every Form	150 - 200 cc / 100 lt water	1-3 lt/da


5-15-0 + ME

FOSFOZINC 2

NP Fertilizer Solution

Guaranteed Content%w/wTotal Nitrogen (N)5Urea Nitrogen (NH2-N)5Water Soluble Phosphorus Pentaoxide15Water Soluble Zinc (Zn)1

PACKAGING

- It is necessary for the root system, flower formation and early maturation in plants.
- Its uptake by the plant is quite fast. Increases flower formation and fruit number. Thanks to the special amino acid groups it contains, its intake is very fast.
- It is a product of phosphoric acid origin. Thanks to the acids in it, it helps to open the clogged drips.
- It is suitable for drip or foliar use. The vitamins in it are completely taken by the plant.

PRODUCTTYPE	APPLICATION TIME	DRIP / IRRIGATION	FROM SOIL
Citrus, Olive, Vineyard	Before Flowering	200 - 250 cc / 100 lt su	1-3 lt/da
	When Fruits Reach Absurd Size		
Apple, Pear, Peach, Apricot, Cherry,	Before Flowering	200 - 250 cc / 100 lt su	1-3 lt/da
Sour Cherry, Pomegranate etc.	After Flowering		
Banana, Kiwi, Fig, Tomato, Pepper,	Before Flowering	200 - 250 cc / 100 lt su	1-3 lt/da
Cucumber Eggplant, Cut Flower Rack	During the Fruit Growth Period		
Lentils - Chickpeas - Peanuts	Before Flowering / During the Fruit Growth Period	500 cc - 1 lt/da	1-3 lt/da
Sugar beet	At 4 - 6 Leaf Period / Root Formation Period	500 cc - 1 lt/da	1-3 lt/da
Melon, watermelon	10 Days After Planting / Before Flowering	200 - 250 cc / 100 lt su	1-3 lt/da
Cotton - Sunflower - Corn - Canola	When 20 - 40 cm and 50 - 70 cm Paint Reached	200 - 250 cc / 100 lt su	1-3 lt/da
Tea	After Every Form	200 - 250 cc / 100 lt su	1-3 lt/da
Fruit Saplings	Rooting Period When the sprouts reach 10 cm	200 - 250 cc / 100 lt su	1-3 lt/da
Paddy	In the Period of Brotherhood and Steering	200 - 250 cc / 100 lt su	
Cereals	In the Period of Brotherhood and Steering	200 - 250 cc / 100 lt su	1-3 lt/da
Green Field Plants	After Every Form	150 - 200 cc / 100 lt su	1-3 lt/da

5-0-18

GREENING 2

NK Fertilizer Solution

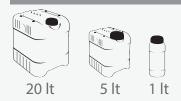
Why is it used?

- Thanks to its structure and content, it is the easiest potassium to be taken up by the plant in salty and calcareous soils.
- Increases fruit quality. Provides color and taste.
- It is easily taken up by the plant. Increases resistance against cold and drought.
- Its effect on fruit and vegetable growth is quite rapid. The nitrogen and special vitamins in it are completely taken by the plant.

Guaranteed Content%w/wTotal Nitrogen (N)5Urea Nitrogen (NH2-N)5Water Soluble Potassium Oxide (K20)18

\smile		
20 lt	5 lt	1

PRODUCT TYPE API	PLICATION TIME	DRIP / IRRIGATION	FROM SOIL
Citrus, Olive, Vineyard	Before Flowering	200 - 250 cc / 100 lt su	1-3 lt/da
	When Fruits Reach Absurd Size		
Apple, Pear, Peach, Apricot, Cherry,	Before Flowering	200 - 250 cc / 100 lt su	1-3 lt/da
Sour Cherry, Pomegranate etc.	After Flowering		
Banana, Kiwi, Fig, Tomato, Pepper,	Before Flowering	200 - 250 cc / 100 lt su	1-3 lt/da
Cucumber Eggplant, Cut Flower Rack	During the Fruit Growth Period		
Lentils - Chickpeas - Peanuts	Before Flowering / During the Fruit Growth Period	500 cc - 1 lt/da	1-3 lt/da
Sugar beet	At 4 - 6 Leaf Period / Root Formation Period	500 cc - 1 lt/da	1-3 lt/da
Melon, watermelon	10 Days After Planting / Before Flowering	200 - 250 cc / 100 lt su	1-3 lt/da
Cotton - Sunflower - Corn - Canola	When 20 - 40 cm and 50 - 70 cm Paint Reached	200 - 250 cc / 100 lt su	1-3 lt/da
Tea	After Every Form	200 - 250 cc / 100 lt su	1-3 lt/da
Fruit Saplings	Rooting Period When the sprouts reach 10 cm	200 - 250 cc / 100 lt su	1-3 lt/da
Paddy	In the Period of Brotherhood and Steering	200 - 250 cc / 100 lt su	
Cereals	In the Period of Brotherhood and Steering	200 - 250 cc / 100 lt su	1-3 lt/da
Green Field Plants	After Every Form	150 - 200 cc / 100 lt su	1-3 lt/da



CALCIUM 12

Calcium Chloride Solution

Guaranteed Content	%w/w
Water Soluble Calcium Oxide (CaO)	12
Water Soluble Boron (B)	0,3

PACKAGING

- Thanks to the special vitamins it contains, rapid results are achieved in the plant. Calcium 12 prevents fruit rot and prolongs its storage life.
- It is completely soluble in water and quickly disperses in water. Its uptake by the plant is fast. Calcium 12 strengthens the cell wall, increases the resistance of the plant, and is good for drought, frost and stress.
- It helps to remove the salinity in the soil. The boron in it ensures that the calcium is constantly dissolved.
- Helps prevent fruit spots. It is suitable for drip or foliar use.

PRODUCTTYPE	APPLICATION TIME	FROM SOIL
Greenhouse Vegetables, Open Field Vegetables, Melon, Watermelon - Strawberry	It is applied 4-5 times until the harvest in the 4-5 leaf period of the plants.	100 - 200 gr / 100 L wate
Apple, Pear, Quince, Peach, Cherry, Sour Cherry, Apricot, Nectarine, Plum	It is applied 3-4 times with an interval of 20 days starting from fruit set.	200 - 300 gr / 100 L wate
Grape, Banana, Pomegranate, Fig, Citrus, Olive, Tea	It is applied 3-4 times with an interval of 20 days after flowering.	200 - 300 gr / 100 L wate
Hazelnut, Walnut, Pistachio, Chestnut	3-4 times every 20 days from fruit set	200 - 300 gr / 100 L wate
Cotton, Corn, Sunflower, Soybean, Canola, Tobacco, Cabbage, Radish, Carrot, Celery, Cauliflower, Cereals, Legumes, Forage Crops	It is applied 1-2 times from the 4-5 leaf period of the plants until the harvest.	200 - 300 gr / 100 L wate
Sugar Beet - Potato - Onion - Garlic	It is applied 1-2 times from tuber formation until harvest.	200 - 300 gr / 100 L wate
Cut Floristry - Green Fields - Paddy	It is applied 2-3 times with an interval of 30 days	200 - 300 gr / 100 L wate

Contains Iron Sulphate

FERRUM

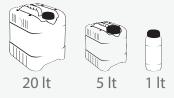
Iron Fertilizer Solution

Why is it used?

- Iron is absolutely necessary for the formation of chlorophyll in plants. It helps photosynthesis, protein and carbohydrate formation, respiration and the activity of most enzymes.
- In soils with high lime content, the uptake by the plant becomes difficult. In its deficiency, development regresses, quality and yield decrease. It prevents flower, fruit and cluster shakes and increases fertility.
- Chitinsan FERRUM is chelated with edta and chitosan. It can be given without dripping, sprinkling or foliar.
- The amino acids in it accelerate the intake. Thanks to its special content, it dissolves completely in water and disperses quickly in water.
- It is completely in a form that can be taken by the plant. It strengthens the immune system of the plant.

Guaranteed Content	%w/w
Water Soluble Iron (Fe)	6

PRODUCT TYPE	APPLICATION TIME	DRIP / IRRIGATION	FROM SOIL
Vegetables (Tomato, Pepper, Cucumber, Eggplant Zucchini, Beans, Peas, Onions etc.)	In any period (from seedling to harvest), including flowe ing period, when deemed necessary	r- 100 - 150 cc	0,5-1 lt
Strawberry, Raspberry etc	In any period, when deemed necessary In any period (from seedling to harvest), including flowe ing period, when deemed necessary	r- 100 - 150 cc/da	0,5-1 lt
Fruit trees	Any period, when deemed necessary, including flowering period	ds 200 cc	1-2 lt
Melon, Watermelon etc.	Any period deemed necessary, including flowering period	ds 100 - 150 cc/da	0,5-1 lt
Bond	Any period deemed necessary, including flowering period	ds 200 cc	1-2 lt
Banana	Any period deemed necessary, including flowering period	ds 200 cc	1-2 lt
Cereals (Wheat, Barley, Oats, paddy etc.)	Any period deemed necessary, including flowering period	ds 100 - 150 cc/da	-
Industrial Plants (Cumin, Anise, Cotton, Beet,	Any period deemed necessary, including flowering period	ds 100 - 150 cc/da	0,5-1 lt
Peanut, Potato etc.)		100 - 150 cc	
Cut Flowers	Any period deemed necessary, including flowering period	ds 75 - 100 cc	0,5-1 lt
Nursery Bed	Any period deemed necessary, including flowering period	ds	0,5 lt


7-25-0 + ME

FOSFOZINC

NP Fertilizer Solution

Guaranteed Content	%w/w
Total Nitrogen (N)	7
Urea Nitrogen (NH2-N)	7
Water Soluble Phosphorus Pentaoxide	e 25
Water Soluble Zinc (Zn)	2

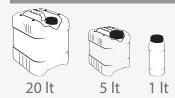
PACKAGING

- It is necessary for the root system, flower formation and early maturation in plants. The uptake of Kitinsan Fosfozinc by the plant is quite fast. Increases flower formation and fruit number.
- Thanks to the special amino acid groups it contains, its intake is very fast. It is a product of phosphoric acid origin.
- Thanks to the acids in it, it helps to open the clogged drips. It is suitable for drip or foliar use. The vitamins in it are completely taken by the plant.

PRODUCT TYPE AF	PLICATION TIME	DRIP / IRRIGATION	FROM SOIL
Citrus, Olive, Vineyard	Before Flowering	200 - 250 cc / 100 lt water	1-3 lt/da
	When Fruits Reach Absurd Size		
Apple, Pear, Peach, Apricot, Cherry,	Before Flowering	200 - 250 cc / 100 lt water	1-3 lt/da
Sour Cherry, Pomegranate etc.	After Flowering		
Banana, Kiwi, Fig, Tomato, Pepper,	Before Flowering	200 - 250 cc / 100 lt water	1-3 lt/da
Cucumber Eggplant, Cut Flower Rack	During the Fruit Growth Period		
Lentils - Chickpeas - Peanuts	Before Flowering / During the Fruit Growth Period	500 cc - 1 lt/da	1-3 lt/da
Sugar beet	At 4 - 6 Leaf Period / Root Formation Period	500 cc - 1 lt/da	1-3 lt/da
Melon, watermelon	10 Days After Planting / Before Flowering	200 - 250 cc / 100 lt water	1-3 lt/da
Cotton - Sunflower - Corn - Canola	When 20 - 40 cm and 50 - 70 cm Paint Reached	200 - 250 cc / 100 lt water	1-3 lt/da
Tea	After Every Form	200 - 250 cc / 100 lt water	1-3 lt/da
Fruit Saplings	Rooting Period When the sprouts reach 10 cm	200 - 250 cc / 100 lt water	1-3 lt/da
Paddy	In the Period of Brotherhood and Steering	200 - 250 cc / 100 lt water	
Cereals	In the Period of Brotherhood and Steering	200 - 250 cc / 100 lt water	1-3 lt/da
Green Field Plants	After Every Form	150 - 200 cc / 100 lt water	1-3 lt/da

5-0-25

GREENING


NK Fertilizer Solution

Why is it used?

- Thanks to its structure and content, it is the easiest potassium to be taken up by the plant in salty and calcareous soils.
- Increases fruit quality. Provides color and taste.
- It is easily taken up by the plant. Increases resistance against cold and drought.
- Its effect on fruit and vegetable growth is quite rapid. The nitrogen and special vitamins in it are completely taken by the plant.

Guaranteed Content%w/wTotal Nitrogen (N)5Urea Nitrogen (NH2-N)5Water Soluble Potassium Oxide (K2O)25

PRODUCT TYPE /	APPLICATION TIME	DRIP / IRRIGATION	FROM SOIL
Citrus, Olive, Vineyard	Before Flowering	200 - 250 cc / 100 lt water	1-3 lt/da
	When Fruits Reach Absurd Size		
Apple, Pear, Peach, Apricot, Cherry,	Before Flowering	200 - 250 cc / 100 lt water	1-3 lt/da
Sour Cherry, Pomegranate etc.	After Flowering		
Banana, Kiwi, Fig, Tomato, Pepper,	Before Flowering	200 - 250 cc / 100 lt water	1-3 lt/da
Cucumber Eggplant, Cut Flower	During the Fruit Growth Period		
Lentils - Chickpeas - Peanuts	Before Flowering / During the Fruit Growth Period	500 cc - 1 lt/da	1-3 lt/da
Sugar beet	At 4 - 6 Leaf Period / Root Formation Period	500 cc - 1 lt/da	1-3 lt/da
Melon, Watermelon	10 Days After Planting / Before Flowering	200 - 250 cc / 100 lt water	1-3 lt/da
Cotton - Sunflower - Corn - Canola	When 20 - 40 cm and 50 - 70 cm Paint Reached	200 - 250 cc / 100 lt water	1-3 lt/da
Tea	After Every Form	200 - 250 cc / 100 lt water	1-3 lt/da
Fruit Saplings	Rooting Period When the sprouts reach 10 cm	200 - 250 cc / 100 lt water	1-3 lt/da
Paddy	In the Period of Brotherhood and Steering	200 - 250 cc / 100 lt water	
Cereals	In the Period of Brotherhood and Steering	200 - 250 cc / 100 lt water	1-3 lt/da
Green Field Plants	After Every Form	150 - 200 cc / 100 lt water	1-3 lt/da

IMPEKTUS

Nitrogen Fertilizer Solution

Guaranteed Content	%w/w
Total Nitrogen (N)	20
Urea Nitrogen (NH2-N)	20
Water Soluble Boron (B)	0,03
Water Soluble Copper (Cu)	0,05
Water Soluble Iron (Fe)	0,5
Water Soluble Manganese (Mn)	0,1
Water Soluble Molybdenum (Mo)	0,005
Water Soluble Zinc (Zn)	0,2

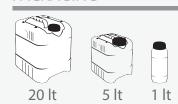
PACKAGING

- Nitrogen is an element that directly affects root development, plant stem length, stem thickness, leaf number and size in plants. Thanks to its special content, it can be easily taken up by the plant.
- It thickens the stem of the plant. It ensures the filling and development of the fruit. It is used during the entire development period of the plant.
- The compatibility of magnesium and amino acid groups and nitrogen is very effective in it. If it is given without dripping, raining or leaf, the result is reached immediately.
- The trace elements in it are chelated with EDTA. The fruit increases the number of grains and strengthens the green parts.

PRODUCT TYPE	APPLICATION TIME	DRIP / IRRIGATION FROM THE SO
Citrus	Before Flowering, Any Period Needed	200 - 300 cc / 100 lt water 3 - 4 lt / da
Fruit trees	Before Flowering, Any Period Needed	200 - 300 cc / 100 lt water 3 - 4 lt / da
Bond	Before Flowering, Any Period Needed	200 - 300 cc / 100 lt water 3 - 4 lt / da
cereals	Before Flowering, Any Period Needed	200 - 300 cc / 100 lt water 3 - 4 lt / da
Sugar beet	Before Flowering, Any Period Needed	200 - 300 cc / 100 lt water 3 - 4 lt / da
Potatoes	Before Flowering, Any Period Needed	200 - 300 cc / da 3 - 4 lt / da
Tobacco	Before Flowering, Any Period Needed	200 - 300 cc / 100 lt water 3 - 4 lt / da
Wheat	Before Flowering, Any Period Needed	200 - 300 cc / da 3 - 4 lt / da
Barley	Before Flowering, Any Period Needed	200 - 300 cc / da 3 - 4 lt / da
garden plants	Before Flowering, Any Period Needed	200 - 300 cc / da 3 - 4 lt / da
Sweetcorn	Before Flowering, Any Period Needed	200 - 300 cc / da 3 - 4 lt / da
Cut Flowers	Before Flowering, Any Period Needed	200 - 300 cc / da 3 - 4 lt / da
Banana	Before Flowering, Any Period Needed	200 - 300 cc / da 3 - 4 lt / da

MAGNOSIT

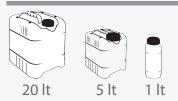
Magnesium Sulphate Fertilizer Solution


Why is it used?

- Magnesium is a very important element for plants. In the absence of magnesium, yellowing of green parts, weakening of root growth and reductions in plant resistance occur.
- Thanks to its content, it strengthens the green part. It contains amino acid groups and organic acids.
- It acts quickly when applied and a visible difference occurs in the plant. It can be given without dripping, sprinkling or foliar.

Guaranteed Content

%w/w


Water Soluble Magnesium Oxide (MgO) 7 Water Soluble Sulfur Trioxide (SO3) 14

PRODUCTTYPE	APPLICATION TIME	DRIP / IRRIGATION FROM THE SOIL
Greenhouse Vegetables	15 Days After Planting, 10 - 15 Days During the Season	150 cc to 100 lt water 2-3 lt/da
Open Field Vegetable Cultivation	15 Days After Planting, 10 - 15 Days During the Season	150 cc to 100 lt water 2-3 lt/da
Cucurbitaceae	15 Days After Planting, 10 - 15 Days During the Season	150 cc to 100 lt water 2-3 lt/da
Leaf Eaten Vegetables	Starting in Early Development Period, every 10-15 days	150 cc to 100 lt water 2-3 lt/da
All Fruit Trees	Before Flowering, Any Period Needed	150 cc to 100 lt water 2-3 lt/da
Vineyards - Tea - Strawberry	With an interval of 10-15 days from the first leafing period	150 cc to 100 lt water 2-3 lt/da
Tuberous Plants	With an interval of 10-15 days from the first leafing period	150 cc to 100 lt water 2-3 lt/da
Arboriculture	Starting in Early Development Period, every 10-15 days	150 cc to 100 lt water 2-3 lt/da
Cut Flowers and Green Fields	Starting in Early Development Period, every 10-15 days	150 cc to 100 lt water 2-3 lt/da
Forage Crops	Starting in Early Development Period, every 10-15 days	150 cc to 100 lt water 2-3 lt/da
cereals	At tillering and after 15 days	150 cc to 100 lt water 2-3 lt/da
Industrial Plants	When the Plant is at 30 - 40 cm and the	150 cc to 100 lt water 2-3 lt/da
	First Tassel Appears in Egypt	

PACKAGING

SULFUR - S

Elemental Liquid Sulfur in SC Form

- Kitinsan Sulfur-S Liquid sulfur; Due to its elemental form, it is an effective product in soil improvement and in adjusting the soil PH level.
- It is an effective product that can be applied in dissolving the lime and salinity of the soil, increasing the acidity of the soil and lowering the PH of the soil.
- It is suitable for use with drip, sprinkler, holder and back pumps. It also breathes into the soil and adjusts its tension.
- It helps to regulate the temperature of the soil in winter.
- Macro that the soil cannot take due to high PH; nitrogen, phosphorus potash etc. and micro; It facilitates the intake of nutrients such as zinc, iron, cobalt and manganese.
- Unlike other liquid sulfur, the sulfur in its formulation is in S form, not SO3. Sulfur in S form should be used, not SO3, to lower the PH in the soil, to remove salinity and lime.
- It does not harm the greenhouse cover.
- Total sulfur (S) content is 80% on average, it is an effective product that can be used in soil improvement due to its elemental S form.

PRODUCT TYPE	APPLICATION TIME	DRIP / IRRIGATION FROM THE SO
Greenhouse Vegetables	15 Days After Planting, 10 - 15 Days During the Season	150 cc to 100 lt water 2-3 lt/da
Open Field Vegetable Cultivation	on 15 Days After Planting, 10 - 15 Days During the Season	150 cc to 100 lt water 2-3 lt/da
Cucurbitaceae	15 Days After Planting, 10 - 15 Days During the Season	150 cc to 100 lt water 2-3 lt/da
Leaf Eaten Vegetables	Starting in Early Development Period, every 10-15 days	150 cc to 100 lt water 2-3 lt/da
All Fruit Trees	Before Flowering, Any Period Needed	150 cc to 100 lt water 2-3 lt/da
Vineyards - Tea - Strawberry	With an interval of 10-15 days from the first leafing period	150 cc to 100 lt water 2-3 lt/da
Tuberous Plants	With an interval of 10-15 days from the first leafing period	150 cc to 100 lt water 2-3 lt/da
Arboriculture	Starting in Early Development Period, every 10-15 days	150 cc to 100 lt water 2-3 lt/da
Cut Flowers and Green Fields	Starting in Early Development Period, every 10-15 days	150 cc to 100 lt water 2-3 lt/da
Forage Crops	Starting in Early Development Period, every 10-15 days	150 cc to 100 lt water 2-3 lt/da
cereals	At tillering and after 15 days	150 cc to 100 lt water 2-3 lt/da
Industrial Plants	When the Plant is at 30 - 40 cm and the First Tassel Appears in Egypt	150 cc to 100 lt water 2-3 lt/da

pH Regulatoru (pH)

Why is it used?

- It provides a strong root development by regulating the pH of the soil. Thanks to the special amino acids and vitamins it contains, it creates a strong root.
- Thanks to the most developed formulation of chitosan, it provides capillary root and hair growth.
- It contains vitamins along with chitosan.
- It is applied only by dripping or sprinkling. Seedlings and saplings can be dipped and planted.

PRODUCTTYPE	APPLICATION TIME I	FROM THE SOI
Greenhouse Vegetables	15 Days After Planting, 10 - 15 Days During the Season	0,5 - 1 lt
Open Field Vegetable Cultivation	15 Days After Planting, 10 - 15 Days During the Season	0,5 - 1 lt
Cucurbitaceae	15 Days After Planting, 10 - 15 Days During the Season	0,5 - 1 lt
Leaf Eaten Vegetables	Starting in Early Development Period, every 10-15 days	0,5 - 1 lt
All Fruit Trees	With an interval of 10-15 days to start in the Spring Early Development Period	od 0,5 - 1 lt
Vineyards - Tea - Strawberry	With an interval of 10-15 days from the first leafing period	0,5 - 1 lt
Tuberous Plants	With an interval of 10-15 days from the first leafing period	0,5 - 1 lt
Arboriculture	Starting in Early Development Period, every 10-15 days	0,5 - 1 lt
Cut Flowers and Green Fields	Starting in Early Development Period, every 10-15 days	0,5 - 1 lt
Forage Crops	Starting in Early Development Period, every 10-15 days	0,5 - 1 lt
cereals	At tillering and after 15 days	0,5 - 1 lt
Industrial Plants	When the Plant is at 30 - 40 cm and the First Tassel Appears in Egypt	0,5 - 1 lt

SINESALIS

Salinity Remover

PACKAGING

- It is used as a salt remover in soils with salinity problems. It eliminates calcium deficiency in acid and alkaline soils.
- It increases the effectiveness of other fertilizers that create a suitable and beneficial environment for plant growth.
- It is applied without dripping or sprinkling. It removes salinity in soils with salinity.

PRODUCTTYPE	APPLICATION TIME F	ROM SOIL
Greenhouse Vegetables	15 Days After Planting, 10 - 15 Days During the Season	2-4 lt
Open Field Vegetable Cultivation	n 15 Days After Planting, 10 - 15 Days During the Season	2-4 lt
Cucurbitaceae	15 Days After Planting, 10 - 15 Days During the Season	2-4 lt
Leaf Eaten Vegetables	Starting in Early Development Period, every 10-15 days	2-4 lt
All Fruit Trees	With an interval of 10-15 days to start in the Spring Early Development Pe	eriod 2-4 lt
Vineyards - Tea - Strawberry	With an interval of 10-15 days from the first leafing period	2-4 lt
Tuberous Plants	With an interval of 10-15 days from the first leafing period	2-4 lt
Arboriculture	Starting in Early Development Period, every 10-15 days	2-4 lt
Cut Flowers and Green Fields	Starting in Early Development Period, every 10-15 days	2-4 lt
Forage Crops	Starting in Early Development Period, every 10-15 days	2-4 lt
Cereals	At tillering and after 15 days	2-4 lt
Industrial Plants	When the Plant is at 30 - 40 cm and the First Tassel Appears in Egypt	2 - 4 lt

Drip Pipe Opener pH Reducer Limescale remover

Why is it used?

- Kitinsan Acidus is made from a mixture of organic and inorganic acids.
- The drip irrigation system helps in solving the blockages that occur in the lands used. It regulates the pH of the water.
- It provides the dissolution of the accumulated elements in the soil and carries them to the plant body.
- It does not harm the plant. It can also be used when the plant is present.

PRODUCTTYPE	APPLICATION TIME	DRIP / IRRIGATION	FROM SOIL
Greenhouse Vegetables	15 Days After Planting, 10 - 15 Days During the Season	100 cc to 100 lt water	2-4 lt/da
Open Field Vegetable	15 Days After Planting, 10 - 15 Days During the Season	100 cc to 100 lt water	2-4 lt/da
Cucurbitaceae	15 Days After Planting, 10 - 15 Days During the Season	100 cc to 100 lt water	2-4 lt/da
Leaf Eaten Vegetables	Starting in Early Development Period, every 10-15 days	100 cc to 100 lt water	2-4 lt/da
All Fruit Trees	Before Flowering, Any Period Needed	100 cc to 100 lt water	2-4 lt/da
Vineyards - Tea - Strawberry	With an interval of 10-15 days from the first leafing period	100 cc to 100 lt water	2-4 lt/da
Tuberous Plants	With an interval of 10-15 days from the first leafing period	100 cc to 100 lt water	2-4 lt/da
Arboriculture	Starting in Early Development Period, every 10-15 days	100 cc to 100 lt water	2-4 lt/da
Cut Flowers and Green Fields	Starting in Early Development Period, every 10-15 days	100 cc to 100 lt water	2-4 lt/da
Forage Crops	Starting in Early Development Period, every 10-15 days	100 cc to 100 lt water	2-4 lt/da
cereals	At tillering and after 15 days	100 cc to 100 lt water	2-4 lt/da
Industrial Plants	When the Plant is at 30 - 40 cm and the First Tassel Appears on Sweetcorn	100 cc to 100 lt water	2-4 lt/da

www.kitinsan.com

Factory 1: Selate ah. Varsak Bey Cad. No: 77/C Kepez / Antalya / Turkiye Factory 2: Erenler OSB 1.cadde No:23 Aksaray / Turkiye

info@kitinsan.com - 0242 417 33 44 Whatsapp Destek : 0539 579 54 44 - 0533 133 60 23